Skip to content

Study-locus

Bases: Dataset

Study-Locus dataset.

This dataset captures associations between study/traits and a genetic loci as provided by finemapping methods.

Source code in src/otg/dataset/study_locus.py
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
@dataclass
class StudyLocus(Dataset):
    """Study-Locus dataset.

    This dataset captures associations between study/traits and a genetic loci as provided by finemapping methods.
    """

    @staticmethod
    def _overlapping_peaks(credset_to_overlap: DataFrame) -> DataFrame:
        """Calculate overlapping signals (study-locus) between GWAS-GWAS and GWAS-Molecular trait.

        Args:
            credset_to_overlap (DataFrame): DataFrame containing at least `studyLocusId`, `studyType`, `chromosome` and `tagVariantId` columns.

        Returns:
            DataFrame: containing `leftStudyLocusId`, `rightStudyLocusId` and `chromosome` columns.
        """
        # Reduce columns to the minimum to reduce the size of the dataframe
        credset_to_overlap = credset_to_overlap.select(
            "studyLocusId", "studyType", "chromosome", "tagVariantId"
        )
        return (
            credset_to_overlap.alias("left")
            .filter(f.col("studyType") == "gwas")
            # Self join with complex condition. Left it's all gwas and right can be gwas or molecular trait
            .join(
                credset_to_overlap.alias("right"),
                on=[
                    f.col("left.chromosome") == f.col("right.chromosome"),
                    f.col("left.tagVariantId") == f.col("right.tagVariantId"),
                    (f.col("right.studyType") != "gwas")
                    | (f.col("left.studyLocusId") > f.col("right.studyLocusId")),
                ],
                how="inner",
            )
            .select(
                f.col("left.studyLocusId").alias("leftStudyLocusId"),
                f.col("right.studyLocusId").alias("rightStudyLocusId"),
                f.col("left.chromosome").alias("chromosome"),
            )
            .distinct()
            .repartition("chromosome")
            .persist()
        )

    @staticmethod
    def _align_overlapping_tags(
        loci_to_overlap: DataFrame, peak_overlaps: DataFrame
    ) -> StudyLocusOverlap:
        """Align overlapping tags in pairs of overlapping study-locus, keeping all tags in both loci.

        Args:
            loci_to_overlap (DataFrame): containing `studyLocusId`, `studyType`, `chromosome`, `tagVariantId`, `logABF` and `posteriorProbability` columns.
            peak_overlaps (DataFrame): containing `left_studyLocusId`, `right_studyLocusId` and `chromosome` columns.

        Returns:
            StudyLocusOverlap: Pairs of overlapping study-locus with aligned tags.
        """
        # Complete information about all tags in the left study-locus of the overlap
        stats_cols = [
            "logABF",
            "posteriorProbability",
            "beta",
            "pValueMantissa",
            "pValueExponent",
        ]
        overlapping_left = loci_to_overlap.select(
            f.col("chromosome"),
            f.col("tagVariantId"),
            f.col("studyLocusId").alias("leftStudyLocusId"),
            *[f.col(col).alias(f"left_{col}") for col in stats_cols],
        ).join(peak_overlaps, on=["chromosome", "leftStudyLocusId"], how="inner")

        # Complete information about all tags in the right study-locus of the overlap
        overlapping_right = loci_to_overlap.select(
            f.col("chromosome"),
            f.col("tagVariantId"),
            f.col("studyLocusId").alias("rightStudyLocusId"),
            *[f.col(col).alias(f"right_{col}") for col in stats_cols],
        ).join(peak_overlaps, on=["chromosome", "rightStudyLocusId"], how="inner")

        # Include information about all tag variants in both study-locus aligned by tag variant id
        overlaps = overlapping_left.join(
            overlapping_right,
            on=[
                "chromosome",
                "rightStudyLocusId",
                "leftStudyLocusId",
                "tagVariantId",
            ],
            how="outer",
        ).select(
            "leftStudyLocusId",
            "rightStudyLocusId",
            "chromosome",
            "tagVariantId",
            f.struct(
                *[f"left_{e}" for e in stats_cols] + [f"right_{e}" for e in stats_cols]
            ).alias("statistics"),
        )
        return StudyLocusOverlap(
            _df=overlaps,
            _schema=StudyLocusOverlap.get_schema(),
        )

    @staticmethod
    def _update_quality_flag(
        qc: Column, flag_condition: Column, flag_text: StudyLocusQualityCheck
    ) -> Column:
        """Update the provided quality control list with a new flag if condition is met.

        Args:
            qc (Column): Array column with the current list of qc flags.
            flag_condition (Column): This is a column of booleans, signing which row should be flagged
            flag_text (StudyLocusQualityCheck): Text for the new quality control flag

        Returns:
            Column: Array column with the updated list of qc flags.
        """
        qc = f.when(qc.isNull(), f.array()).otherwise(qc)
        return f.when(
            flag_condition,
            f.array_union(qc, f.array(f.lit(flag_text.value))),
        ).otherwise(qc)

    @staticmethod
    def _filter_credible_set(credible_set: Column) -> Column:
        """Filter credible set to only contain variants that belong to the 95% credible set.

        Args:
            credible_set (Column): Credible set column containing all variants in the LD set.

        Returns:
            Column: Filtered credible set column.

        Example:
            >>> df = spark.createDataFrame([([{"variantId": "varA", "is95CredibleSet": True}, {"variantId": "varB", "is95CredibleSet": False}],)], "locus: array<struct<variantId: string, is95CredibleSet: boolean>>")
            >>> df.select(StudyLocus._filter_credible_set(f.col("locus")).alias("filtered")).show(truncate=False)
            +--------------+
            |filtered      |
            +--------------+
            |[{varA, true}]|
            +--------------+
            <BLANKLINE>
        """
        return f.filter(credible_set, lambda x: x["is95CredibleSet"])

    @staticmethod
    def assign_study_locus_id(study_id_col: Column, variant_id_col: Column) -> Column:
        """Hashes a column with a variant ID and a study ID to extract a consistent studyLocusId.

        Args:
            study_id_col (Column): column name with a study ID
            variant_id_col (Column): column name with a variant ID

        Returns:
            Column: column with a study locus ID

        Examples:
            >>> df = spark.createDataFrame([("GCST000001", "1_1000_A_C"), ("GCST000002", "1_1000_A_C")]).toDF("studyId", "variantId")
            >>> df.withColumn("study_locus_id", StudyLocus.assign_study_locus_id(*[f.col("variantId"), f.col("studyId")])).show()
            +----------+----------+--------------------+
            |   studyId| variantId|      study_locus_id|
            +----------+----------+--------------------+
            |GCST000001|1_1000_A_C| 7437284926964690765|
            |GCST000002|1_1000_A_C|-7653912547667845377|
            +----------+----------+--------------------+
            <BLANKLINE>
        """
        return f.xxhash64(*[study_id_col, variant_id_col]).alias("studyLocusId")

    @classmethod
    def get_schema(cls: type[StudyLocus]) -> StructType:
        """Provides the schema for the StudyLocus dataset."""
        return parse_spark_schema("study_locus.json")

    def credible_set(
        self: StudyLocus,
        credible_interval: CredibleInterval,
    ) -> StudyLocus:
        """Filter study-locus tag variants based on given credible interval.

        Args:
            credible_interval (CredibleInterval): Credible interval to filter for.

        Returns:
            StudyLocus: Filtered study-locus dataset.
        """
        self.df = self._df.withColumn(
            "locus",
            f.expr(f"filter(locus, tag -> (tag.{credible_interval.value}))"),
        )
        return self

    def find_overlaps(self: StudyLocus, study_index: StudyIndex) -> StudyLocusOverlap:
        """Calculate overlapping study-locus.

        Find overlapping study-locus that share at least one tagging variant. All GWAS-GWAS and all GWAS-Molecular traits are computed with the Molecular traits always
        appearing on the right side.

        Args:
            study_index (StudyIndex): Study index to resolve study types.

        Returns:
            StudyLocusOverlap: Pairs of overlapping study-locus with aligned tags.
        """
        loci_to_overlap = (
            self.df.join(study_index.study_type_lut(), on="studyId", how="inner")
            .withColumn("locus", f.explode("locus"))
            .select(
                "studyLocusId",
                "studyType",
                "chromosome",
                f.col("locus.variantId").alias("tagVariantId"),
                f.col("locus.logABF").alias("logABF"),
                f.col("locus.posteriorProbability").alias("posteriorProbability"),
                f.col("locus.pValueMantissa").alias("pValueMantissa"),
                f.col("locus.pValueExponent").alias("pValueExponent"),
                f.col("locus.beta").alias("beta"),
            )
            .persist()
        )

        # overlapping study-locus
        peak_overlaps = self._overlapping_peaks(loci_to_overlap)

        # study-locus overlap by aligning overlapping variants
        return self._align_overlapping_tags(loci_to_overlap, peak_overlaps)

    def unique_lead_tag_variants(self: StudyLocus) -> DataFrame:
        """All unique lead and tag variants contained in the `StudyLocus` dataframe.

        Returns:
            DataFrame: A dataframe containing `variantId` and `chromosome` columns.
        """
        lead_tags = (
            self.df.select(
                f.col("variantId"),
                f.col("chromosome"),
                f.explode("ldSet.tagVariantId").alias("tagVariantId"),
            )
            .repartition("chromosome")
            .persist()
        )
        return (
            lead_tags.select("variantId", "chromosome")
            .union(
                lead_tags.select(f.col("tagVariantId").alias("variantId"), "chromosome")
            )
            .distinct()
        )

    def neglog_pvalue(self: StudyLocus) -> Column:
        """Returns the negative log p-value.

        Returns:
            Column: Negative log p-value
        """
        return calculate_neglog_pvalue(
            self.df.pValueMantissa,
            self.df.pValueExponent,
        )

    def annotate_credible_sets(self: StudyLocus) -> StudyLocus:
        """Annotate study-locus dataset with credible set flags.

        Sorts the array in the `locus` column elements by their `posteriorProbability` values in descending order and adds
        `is95CredibleSet` and `is99CredibleSet` fields to the elements, indicating which are the tagging variants whose cumulative sum
        of their `posteriorProbability` values is below 0.95 and 0.99, respectively.

        Returns:
            StudyLocus: including annotation on `is95CredibleSet` and `is99CredibleSet`.
        """
        self.df = (
            self.df.withColumn(
                # Sort credible set by posterior probability in descending order
                "locus",
                f.when(
                    f.size(f.col("locus")) > 0,
                    order_array_of_structs_by_field("locus", "posteriorProbability"),
                ).when(f.size(f.col("locus")) == 0, f.col("locus")),
            )
            .withColumn(
                # Calculate array of cumulative sums of posterior probabilities to determine which variants are in the 95% and 99% credible sets
                # and zip the cumulative sums array with the credible set array to add the flags
                "locus",
                f.when(
                    f.size(f.col("locus")) > 0,
                    f.zip_with(
                        f.col("locus"),
                        f.transform(
                            f.sequence(f.lit(1), f.size(f.col("locus"))),
                            lambda index: f.aggregate(
                                f.slice(
                                    # By using `index - 1` we introduce a value of `0.0` in the cumulative sums array. to ensure that the last variant
                                    # that exceeds the 0.95 threshold is included in the cumulative sum, as its probability is necessary to satisfy the threshold.
                                    f.col("locus.posteriorProbability"),
                                    1,
                                    index - 1,
                                ),
                                f.lit(0.0),
                                lambda acc, el: acc + el,
                            ),
                        ),
                        lambda struct_e, acc: struct_e.withField(
                            CredibleInterval.IS95.value, acc < 0.95
                        ).withField(CredibleInterval.IS99.value, acc < 0.99),
                    ),
                ).when(f.size(f.col("locus")) == 0, f.col("locus")),
            )
            .withColumn("locus", StudyLocus._filter_credible_set(f.col("locus")))
        )
        return self

    def clump(self: StudyLocus) -> StudyLocus:
        """Perform LD clumping of the studyLocus.

        Evaluates whether a lead variant is linked to a tag (with lowest p-value) in the same studyLocus dataset.

        Returns:
            StudyLocus: with empty credible sets for linked variants and QC flag.
        """
        self.df = (
            self.df.withColumn(
                "is_lead_linked",
                LDclumping._is_lead_linked(
                    self.df.studyId,
                    self.df.variantId,
                    self.df.pValueExponent,
                    self.df.pValueMantissa,
                    self.df.ldSet,
                ),
            )
            .withColumn(
                "ldSet",
                f.when(f.col("is_lead_linked"), f.array()).otherwise(f.col("ldSet")),
            )
            .withColumn(
                "qualityControls",
                StudyLocus._update_quality_flag(
                    f.col("qualityControls"),
                    f.col("is_lead_linked"),
                    StudyLocusQualityCheck.LD_CLUMPED,
                ),
            )
            .drop("is_lead_linked")
        )
        return self

annotate_credible_sets()

Annotate study-locus dataset with credible set flags.

Sorts the array in the locus column elements by their posteriorProbability values in descending order and adds is95CredibleSet and is99CredibleSet fields to the elements, indicating which are the tagging variants whose cumulative sum of their posteriorProbability values is below 0.95 and 0.99, respectively.

Returns:

Name Type Description
StudyLocus StudyLocus

including annotation on is95CredibleSet and is99CredibleSet.

Source code in src/otg/dataset/study_locus.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
def annotate_credible_sets(self: StudyLocus) -> StudyLocus:
    """Annotate study-locus dataset with credible set flags.

    Sorts the array in the `locus` column elements by their `posteriorProbability` values in descending order and adds
    `is95CredibleSet` and `is99CredibleSet` fields to the elements, indicating which are the tagging variants whose cumulative sum
    of their `posteriorProbability` values is below 0.95 and 0.99, respectively.

    Returns:
        StudyLocus: including annotation on `is95CredibleSet` and `is99CredibleSet`.
    """
    self.df = (
        self.df.withColumn(
            # Sort credible set by posterior probability in descending order
            "locus",
            f.when(
                f.size(f.col("locus")) > 0,
                order_array_of_structs_by_field("locus", "posteriorProbability"),
            ).when(f.size(f.col("locus")) == 0, f.col("locus")),
        )
        .withColumn(
            # Calculate array of cumulative sums of posterior probabilities to determine which variants are in the 95% and 99% credible sets
            # and zip the cumulative sums array with the credible set array to add the flags
            "locus",
            f.when(
                f.size(f.col("locus")) > 0,
                f.zip_with(
                    f.col("locus"),
                    f.transform(
                        f.sequence(f.lit(1), f.size(f.col("locus"))),
                        lambda index: f.aggregate(
                            f.slice(
                                # By using `index - 1` we introduce a value of `0.0` in the cumulative sums array. to ensure that the last variant
                                # that exceeds the 0.95 threshold is included in the cumulative sum, as its probability is necessary to satisfy the threshold.
                                f.col("locus.posteriorProbability"),
                                1,
                                index - 1,
                            ),
                            f.lit(0.0),
                            lambda acc, el: acc + el,
                        ),
                    ),
                    lambda struct_e, acc: struct_e.withField(
                        CredibleInterval.IS95.value, acc < 0.95
                    ).withField(CredibleInterval.IS99.value, acc < 0.99),
                ),
            ).when(f.size(f.col("locus")) == 0, f.col("locus")),
        )
        .withColumn("locus", StudyLocus._filter_credible_set(f.col("locus")))
    )
    return self

assign_study_locus_id(study_id_col, variant_id_col) staticmethod

Hashes a column with a variant ID and a study ID to extract a consistent studyLocusId.

Parameters:

Name Type Description Default
study_id_col Column

column name with a study ID

required
variant_id_col Column

column name with a variant ID

required

Returns:

Name Type Description
Column Column

column with a study locus ID

Examples:

>>> df = spark.createDataFrame([("GCST000001", "1_1000_A_C"), ("GCST000002", "1_1000_A_C")]).toDF("studyId", "variantId")
>>> df.withColumn("study_locus_id", StudyLocus.assign_study_locus_id(*[f.col("variantId"), f.col("studyId")])).show()
+----------+----------+--------------------+
|   studyId| variantId|      study_locus_id|
+----------+----------+--------------------+
|GCST000001|1_1000_A_C| 7437284926964690765|
|GCST000002|1_1000_A_C|-7653912547667845377|
+----------+----------+--------------------+
Source code in src/otg/dataset/study_locus.py
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
@staticmethod
def assign_study_locus_id(study_id_col: Column, variant_id_col: Column) -> Column:
    """Hashes a column with a variant ID and a study ID to extract a consistent studyLocusId.

    Args:
        study_id_col (Column): column name with a study ID
        variant_id_col (Column): column name with a variant ID

    Returns:
        Column: column with a study locus ID

    Examples:
        >>> df = spark.createDataFrame([("GCST000001", "1_1000_A_C"), ("GCST000002", "1_1000_A_C")]).toDF("studyId", "variantId")
        >>> df.withColumn("study_locus_id", StudyLocus.assign_study_locus_id(*[f.col("variantId"), f.col("studyId")])).show()
        +----------+----------+--------------------+
        |   studyId| variantId|      study_locus_id|
        +----------+----------+--------------------+
        |GCST000001|1_1000_A_C| 7437284926964690765|
        |GCST000002|1_1000_A_C|-7653912547667845377|
        +----------+----------+--------------------+
        <BLANKLINE>
    """
    return f.xxhash64(*[study_id_col, variant_id_col]).alias("studyLocusId")

clump()

Perform LD clumping of the studyLocus.

Evaluates whether a lead variant is linked to a tag (with lowest p-value) in the same studyLocus dataset.

Returns:

Name Type Description
StudyLocus StudyLocus

with empty credible sets for linked variants and QC flag.

Source code in src/otg/dataset/study_locus.py
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
def clump(self: StudyLocus) -> StudyLocus:
    """Perform LD clumping of the studyLocus.

    Evaluates whether a lead variant is linked to a tag (with lowest p-value) in the same studyLocus dataset.

    Returns:
        StudyLocus: with empty credible sets for linked variants and QC flag.
    """
    self.df = (
        self.df.withColumn(
            "is_lead_linked",
            LDclumping._is_lead_linked(
                self.df.studyId,
                self.df.variantId,
                self.df.pValueExponent,
                self.df.pValueMantissa,
                self.df.ldSet,
            ),
        )
        .withColumn(
            "ldSet",
            f.when(f.col("is_lead_linked"), f.array()).otherwise(f.col("ldSet")),
        )
        .withColumn(
            "qualityControls",
            StudyLocus._update_quality_flag(
                f.col("qualityControls"),
                f.col("is_lead_linked"),
                StudyLocusQualityCheck.LD_CLUMPED,
            ),
        )
        .drop("is_lead_linked")
    )
    return self

credible_set(credible_interval)

Filter study-locus tag variants based on given credible interval.

Parameters:

Name Type Description Default
credible_interval CredibleInterval

Credible interval to filter for.

required

Returns:

Name Type Description
StudyLocus StudyLocus

Filtered study-locus dataset.

Source code in src/otg/dataset/study_locus.py
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def credible_set(
    self: StudyLocus,
    credible_interval: CredibleInterval,
) -> StudyLocus:
    """Filter study-locus tag variants based on given credible interval.

    Args:
        credible_interval (CredibleInterval): Credible interval to filter for.

    Returns:
        StudyLocus: Filtered study-locus dataset.
    """
    self.df = self._df.withColumn(
        "locus",
        f.expr(f"filter(locus, tag -> (tag.{credible_interval.value}))"),
    )
    return self

find_overlaps(study_index)

Calculate overlapping study-locus.

Find overlapping study-locus that share at least one tagging variant. All GWAS-GWAS and all GWAS-Molecular traits are computed with the Molecular traits always appearing on the right side.

Parameters:

Name Type Description Default
study_index StudyIndex

Study index to resolve study types.

required

Returns:

Name Type Description
StudyLocusOverlap StudyLocusOverlap

Pairs of overlapping study-locus with aligned tags.

Source code in src/otg/dataset/study_locus.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def find_overlaps(self: StudyLocus, study_index: StudyIndex) -> StudyLocusOverlap:
    """Calculate overlapping study-locus.

    Find overlapping study-locus that share at least one tagging variant. All GWAS-GWAS and all GWAS-Molecular traits are computed with the Molecular traits always
    appearing on the right side.

    Args:
        study_index (StudyIndex): Study index to resolve study types.

    Returns:
        StudyLocusOverlap: Pairs of overlapping study-locus with aligned tags.
    """
    loci_to_overlap = (
        self.df.join(study_index.study_type_lut(), on="studyId", how="inner")
        .withColumn("locus", f.explode("locus"))
        .select(
            "studyLocusId",
            "studyType",
            "chromosome",
            f.col("locus.variantId").alias("tagVariantId"),
            f.col("locus.logABF").alias("logABF"),
            f.col("locus.posteriorProbability").alias("posteriorProbability"),
            f.col("locus.pValueMantissa").alias("pValueMantissa"),
            f.col("locus.pValueExponent").alias("pValueExponent"),
            f.col("locus.beta").alias("beta"),
        )
        .persist()
    )

    # overlapping study-locus
    peak_overlaps = self._overlapping_peaks(loci_to_overlap)

    # study-locus overlap by aligning overlapping variants
    return self._align_overlapping_tags(loci_to_overlap, peak_overlaps)

get_schema() classmethod

Provides the schema for the StudyLocus dataset.

Source code in src/otg/dataset/study_locus.py
250
251
252
253
@classmethod
def get_schema(cls: type[StudyLocus]) -> StructType:
    """Provides the schema for the StudyLocus dataset."""
    return parse_spark_schema("study_locus.json")

neglog_pvalue()

Returns the negative log p-value.

Returns:

Name Type Description
Column Column

Negative log p-value

Source code in src/otg/dataset/study_locus.py
331
332
333
334
335
336
337
338
339
340
def neglog_pvalue(self: StudyLocus) -> Column:
    """Returns the negative log p-value.

    Returns:
        Column: Negative log p-value
    """
    return calculate_neglog_pvalue(
        self.df.pValueMantissa,
        self.df.pValueExponent,
    )

unique_lead_tag_variants()

All unique lead and tag variants contained in the StudyLocus dataframe.

Returns:

Name Type Description
DataFrame DataFrame

A dataframe containing variantId and chromosome columns.

Source code in src/otg/dataset/study_locus.py
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
def unique_lead_tag_variants(self: StudyLocus) -> DataFrame:
    """All unique lead and tag variants contained in the `StudyLocus` dataframe.

    Returns:
        DataFrame: A dataframe containing `variantId` and `chromosome` columns.
    """
    lead_tags = (
        self.df.select(
            f.col("variantId"),
            f.col("chromosome"),
            f.explode("ldSet.tagVariantId").alias("tagVariantId"),
        )
        .repartition("chromosome")
        .persist()
    )
    return (
        lead_tags.select("variantId", "chromosome")
        .union(
            lead_tags.select(f.col("tagVariantId").alias("variantId"), "chromosome")
        )
        .distinct()
    )

Schema

root
 |-- studyLocusId: long (nullable = false)
 |-- variantId: string (nullable = false)
 |-- chromosome: string (nullable = true)
 |-- position: integer (nullable = true)
 |-- studyId: string (nullable = false)
 |-- beta: double (nullable = true)
 |-- oddsRatio: double (nullable = true)
 |-- oddsRatioConfidenceIntervalLower: double (nullable = true)
 |-- oddsRatioConfidenceIntervalUpper: double (nullable = true)
 |-- betaConfidenceIntervalLower: double (nullable = true)
 |-- betaConfidenceIntervalUpper: double (nullable = true)
 |-- pValueMantissa: float (nullable = true)
 |-- pValueExponent: integer (nullable = true)
 |-- effectAlleleFrequencyFromSource: float (nullable = true)
 |-- standardError: double (nullable = true)
 |-- subStudyDescription: string (nullable = true)
 |-- qualityControls: array (nullable = true)
 |    |-- element: string (containsNull = false)
 |-- finemappingMethod: string (nullable = true)
 |-- ldSet: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- tagVariantId: string (nullable = true)
 |    |    |-- r2Overall: double (nullable = true)
 |-- locus: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- is95CredibleSet: boolean (nullable = true)
 |    |    |-- is99CredibleSet: boolean (nullable = true)
 |    |    |-- logABF: double (nullable = true)
 |    |    |-- posteriorProbability: double (nullable = true)
 |    |    |-- variantId: string (nullable = true)
 |    |    |-- pValueMantissa: float (nullable = true)
 |    |    |-- pValueExponent: integer (nullable = true)
 |    |    |-- pValueMantissaConditioned: float (nullable = true)
 |    |    |-- pValueExponentConditioned: integer (nullable = true)
 |    |    |-- beta: double (nullable = true)
 |    |    |-- standardError: double (nullable = true)
 |    |    |-- betaConditioned: double (nullable = true)
 |    |    |-- standardErrorConditioned: double (nullable = true)
 |    |    |-- r2Overall: double (nullable = true)

Study-locus quality controls

Bases: Enum

Study-Locus quality control options listing concerns on the quality of the association.

Attributes:

Name Type Description
SUBSIGNIFICANT_FLAG str

p-value below significance threshold

NO_GENOMIC_LOCATION_FLAG str

Incomplete genomic mapping

COMPOSITE_FLAG str

Composite association due to variant x variant interactions

VARIANT_INCONSISTENCY_FLAG str

Inconsistencies in the reported variants

NON_MAPPED_VARIANT_FLAG str

Variant not mapped to GnomAd

PALINDROMIC_ALLELE_FLAG str

Alleles are palindromic - cannot harmonize

AMBIGUOUS_STUDY str

Association with ambiguous study

UNRESOLVED_LD str

Variant not found in LD reference

LD_CLUMPED str

Explained by a more significant variant in high LD (clumped)

Source code in src/otg/dataset/study_locus.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class StudyLocusQualityCheck(Enum):
    """Study-Locus quality control options listing concerns on the quality of the association.

    Attributes:
        SUBSIGNIFICANT_FLAG (str): p-value below significance threshold
        NO_GENOMIC_LOCATION_FLAG (str): Incomplete genomic mapping
        COMPOSITE_FLAG (str): Composite association due to variant x variant interactions
        VARIANT_INCONSISTENCY_FLAG (str): Inconsistencies in the reported variants
        NON_MAPPED_VARIANT_FLAG (str): Variant not mapped to GnomAd
        PALINDROMIC_ALLELE_FLAG (str): Alleles are palindromic - cannot harmonize
        AMBIGUOUS_STUDY (str): Association with ambiguous study
        UNRESOLVED_LD (str): Variant not found in LD reference
        LD_CLUMPED (str): Explained by a more significant variant in high LD (clumped)
    """

    SUBSIGNIFICANT_FLAG = "Subsignificant p-value"
    NO_GENOMIC_LOCATION_FLAG = "Incomplete genomic mapping"
    COMPOSITE_FLAG = "Composite association"
    INCONSISTENCY_FLAG = "Variant inconsistency"
    NON_MAPPED_VARIANT_FLAG = "No mapping in GnomAd"
    PALINDROMIC_ALLELE_FLAG = "Palindrome alleles - cannot harmonize"
    AMBIGUOUS_STUDY = "Association with ambiguous study"
    UNRESOLVED_LD = "Variant not found in LD reference"
    LD_CLUMPED = "Explained by a more significant variant in high LD (clumped)"

Credible interval

Bases: Enum

Credible interval enum.

Interval within which an unobserved parameter value falls with a particular probability.

Attributes:

Name Type Description
IS95 str

95% credible interval

IS99 str

99% credible interval

Source code in src/otg/dataset/study_locus.py
65
66
67
68
69
70
71
72
73
74
75
76
class CredibleInterval(Enum):
    """Credible interval enum.

    Interval within which an unobserved parameter value falls with a particular probability.

    Attributes:
        IS95 (str): 95% credible interval
        IS99 (str): 99% credible interval
    """

    IS95 = "is95CredibleSet"
    IS99 = "is99CredibleSet"