spark
Operations on PySpark columns¶
gentropy.common.spark.nullify_empty_array(column: Column) -> Column
¶
Returns null when a Spark Column has an array of size 0, otherwise return the array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column
|
Column
|
The Spark Column to be processed. |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
Nullified column when the array is empty. |
Examples:
>>> df = spark.createDataFrame([[], [1, 2, 3]], "array<int>")
>>> df.withColumn("new", nullify_empty_array(df.value)).show()
+---------+---------+
| value| new|
+---------+---------+
| []| NULL|
|[1, 2, 3]|[1, 2, 3]|
+---------+---------+
Source code in src/gentropy/common/spark.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
|
gentropy.common.spark.get_top_ranked_in_window(df: DataFrame, w: WindowSpec) -> DataFrame
¶
Returns the record with the top rank within each group of the window.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The DataFrame to be processed. |
required |
w
|
WindowSpec
|
The window to be used for ranking. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
The DataFrame with the record with the top rank within each group of the window. |
Source code in src/gentropy/common/spark.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
gentropy.common.spark.get_record_with_minimum_value(df: DataFrame, grouping_col: Column | str | list[Column | str], sorting_col: str) -> DataFrame
¶
Returns the record with the minimum value of the sorting column within each group of the grouping column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The DataFrame to be processed. |
required |
grouping_col
|
Column | str | list[Column | str]
|
The column(s) to group the DataFrame by. |
required |
sorting_col
|
str
|
The column name to sort the DataFrame by. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
The DataFrame with the record with the minimum value of the sorting column within each group of the grouping column. |
Source code in src/gentropy/common/spark.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
gentropy.common.spark.get_record_with_maximum_value(df: DataFrame, grouping_col: str | list[str], sorting_col: str) -> DataFrame
¶
Returns the record with the maximum value of the sorting column within each group of the grouping column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The DataFrame to be processed. |
required |
grouping_col
|
str | list[str]
|
The column(s) to group the DataFrame by. |
required |
sorting_col
|
str
|
The column name to sort the DataFrame by. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
The DataFrame with the record with the maximum value of the sorting column within each group of the grouping column. |
Source code in src/gentropy/common/spark.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
gentropy.common.spark.normalise_column(df: DataFrame, input_col_name: str, output_col_name: str) -> DataFrame
¶
Normalises a numerical column to a value between 0 and 1.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The DataFrame to be processed. |
required |
input_col_name
|
str
|
The name of the column to be normalised. |
required |
output_col_name
|
str
|
The name of the column to store the normalised values. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
The DataFrame with the normalised column. |
Examples:
>>> df = spark.createDataFrame([5, 50, 1000], "int")
>>> df.transform(lambda df: normalise_column(df, "value", "norm_value")).show()
+-----+----------+
|value|norm_value|
+-----+----------+
| 5| 0.0|
| 50| 0.05|
| 1000| 1.0|
+-----+----------+
Source code in src/gentropy/common/spark.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|
gentropy.common.spark.string2camelcase(col_name: str) -> str
¶
Converting a string to camelcase.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col_name
|
str
|
a random string |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Camel cased string |
Examples:
>>> string2camelcase("hello_world")
'helloWorld'
>>> string2camelcase("hello world")
'helloWorld'
Source code in src/gentropy/common/spark.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
gentropy.common.spark.column2camel_case(col_name: str) -> str
¶
A helper function to convert column names to camel cases.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col_name
|
str
|
a single column name |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
spark expression to select and rename the column |
Examples:
>>> column2camel_case("hello_world")
'`hello_world` as helloWorld'
Source code in src/gentropy/common/spark.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
gentropy.common.spark.get_value_from_row(row: Row, column: str) -> Any
¶
Extract index value from a row if exists.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
row
|
Row
|
One row from a dataframe |
required |
column
|
str
|
column label we want to extract. |
required |
Returns:
Name | Type | Description |
---|---|---|
Any |
Any
|
value of the column in the row |
Raises:
Type | Description |
---|---|
ValueError
|
if the column is not in the row |
Examples:
>>> get_value_from_row(Row(geneName="AR", chromosome="X"), "chromosome")
'X'
>>> get_value_from_row(Row(geneName="AR", chromosome="X"), "disease")
Traceback (most recent call last):
...
ValueError: Column disease not found in row Row(geneName='AR', chromosome='X')
Source code in src/gentropy/common/spark.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
|
gentropy.common.spark.safe_array_union(a: Column, b: Column, fields_order: list[str] | None = None) -> Column
¶
Merge the content of two optional columns.
The function assumes the array columns have the same schema.
If the fields_order
is passed, the function assumes that it deals with array of structs and sorts the nested
struct fields by the provided fields_order
before conducting array_merge.
If the fields_order
is not passed and both columns are <array<struct<...>> type then function assumes struct fields have the same order,
otherwise the function will raise an AnalysisException.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
Column
|
One optional array column. |
required |
b
|
Column
|
The other optional array column. |
required |
fields_order
|
list[str] | None
|
The order of the fields in the struct. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
array column with merged content. |
Examples:
>>> data = [(['a'], ['b']), (['c'], None), (None, ['d']), (None, None)]
>>> (
... spark.createDataFrame(data, ['col1', 'col2'])
... .select(
... safe_array_union(f.col('col1'), f.col('col2')).alias('merged')
... )
... .show()
... )
+------+
|merged|
+------+
|[a, b]|
| [c]|
| [d]|
| NULL|
+------+
>>> schema="arr2: array<struct<b:int,a:string>>, arr: array<struct<a:string,b:int>>"
>>> data = [([(1,"a",), (2, "c")],[("a", 1,)]),]
>>> df = spark.createDataFrame(data=data, schema=schema)
>>> df.select(safe_array_union(f.col("arr"), f.col("arr2"), fields_order=["a", "b"]).alias("merged")).show()
+----------------+
| merged|
+----------------+
|[{a, 1}, {c, 2}]|
+----------------+
>>> schema="arr2: array<struct<b:int,a:string>>, arr: array<struct<a:string,b:int>>"
>>> data = [([(1,"a",), (2, "c")],[("a", 1,)]),]
>>> df = spark.createDataFrame(data=data, schema=schema)
>>> df.select(safe_array_union(f.col("arr"), f.col("arr2")).alias("merged")).show()
Traceback (most recent call last):
pyspark.sql.utils.AnalysisException: ...
Source code in src/gentropy/common/spark.py
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
|
gentropy.common.spark.sort_array_struct_by_columns(column: Column, fields_order: list[str]) -> Column
¶
Sort nested struct fields by provided fields order.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column
|
Column
|
Column with array of structs. |
required |
fields_order
|
list[str]
|
List of field names to sort by. |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
Sorted column. |
Examples:
>>> schema="arr: array<struct<b:int,a:string>>"
>>> data = [([(1,"a",), (2, "c")],)]
>>> fields_order = ["a", "b"]
>>> df = spark.createDataFrame(data=data, schema=schema)
>>> df.select(sort_array_struct_by_columns(f.col("arr"), fields_order).alias("sorted")).show()
+----------------+
| sorted|
+----------------+
|[{c, 2}, {a, 1}]|
+----------------+
Source code in src/gentropy/common/spark.py
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
|
gentropy.common.spark.extract_column_name(column: Column) -> str
¶
Extract column name from a column expression.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column
|
Column
|
Column expression. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Column name. |
Raises:
Type | Description |
---|---|
ValueError
|
If the column name cannot be extracted. |
Examples:
>>> extract_column_name(f.col('col1'))
'col1'
>>> extract_column_name(f.sort_array(f.col('col1')))
'sort_array(col1, true)'
Source code in src/gentropy/common/spark.py
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
|
gentropy.common.spark.order_array_of_structs_by_field(column_name: str, field_name: str) -> Column
¶
Sort a column of array of structs by a field in descending order, nulls last.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column_name
|
str
|
Column name |
required |
field_name
|
str
|
Field name |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
Sorted column |
Source code in src/gentropy/common/spark.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
gentropy.common.spark.order_array_of_structs_by_two_fields(array_name: str, descending_column: str, ascending_column: str) -> Column
¶
Sort array of structs by a field in descending order and by an other field in an ascending order.
This function doesn't deal with null values, assumes the sort columns are not nullable. The sorting function compares the descending_column first, in case when two values from descending_column are equal it compares the ascending_column. When values in both columns are equal, the rows order is preserved.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
array_name
|
str
|
Column name with array of structs |
required |
descending_column
|
str
|
Name of the first keys sorted in descending order |
required |
ascending_column
|
str
|
Name of the second keys sorted in ascending order |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
Sorted column |
Examples:
>>> data = [(1.0, 45, 'First'), (0.5, 232, 'Third'), (0.5, 233, 'Fourth'), (1.0, 125, 'Second'),]
>>> (
... spark.createDataFrame(data, ['col1', 'col2', 'ranking'])
... .groupBy(f.lit('c'))
... .agg(f.collect_list(f.struct('col1','col2', 'ranking')).alias('list'))
... .select(order_array_of_structs_by_two_fields('list', 'col1', 'col2').alias('sorted_list'))
... .show(truncate=False)
... )
+-----------------------------------------------------------------------------+
|sorted_list |
+-----------------------------------------------------------------------------+
|[{1.0, 45, First}, {1.0, 125, Second}, {0.5, 232, Third}, {0.5, 233, Fourth}]|
+-----------------------------------------------------------------------------+
>>> data = [(1.0, 45, 'First'), (1.0, 45, 'Second'), (0.5, 233, 'Fourth'), (1.0, 125, 'Third'),]
>>> (
... spark.createDataFrame(data, ['col1', 'col2', 'ranking'])
... .groupBy(f.lit('c'))
... .agg(f.collect_list(f.struct('col1','col2', 'ranking')).alias('list'))
... .select(order_array_of_structs_by_two_fields('list', 'col1', 'col2').alias('sorted_list'))
... .show(truncate=False)
... )
+----------------------------------------------------------------------------+
|sorted_list |
+----------------------------------------------------------------------------+
|[{1.0, 45, First}, {1.0, 45, Second}, {1.0, 125, Third}, {0.5, 233, Fourth}]|
+----------------------------------------------------------------------------+
Source code in src/gentropy/common/spark.py
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
gentropy.common.spark.map_column_by_dictionary(col: Column, mapping_dict: dict[str, Any]) -> Column
¶
Map column values to dictionary values by key.
Missing consequence label will be converted to None, unmapped consequences will be mapped as None.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col
|
Column
|
Column containing labels to map. |
required |
mapping_dict
|
dict[str, Any]
|
Dictionary with mapping key/value pairs. |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
Column with mapped values. |
Examples:
>>> data = [('consequence_1',),('unmapped_consequence',),(None,)]
>>> m = {'consequence_1': 'SO:000000'}
>>> (
... spark.createDataFrame(data, ['label'])
... .select('label',map_column_by_dictionary(f.col('label'),m).alias('id'))
... .show()
... )
+--------------------+---------+
| label| id|
+--------------------+---------+
| consequence_1|SO:000000|
|unmapped_consequence| NULL|
| NULL| NULL|
+--------------------+---------+
Source code in src/gentropy/common/spark.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
gentropy.common.spark.create_empty_column_if_not_exists(col_name: str, col_schema: t.DataType = t.NullType()) -> Column
¶
Create a column if it does not exist in the DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col_name
|
str
|
The name of the column to be created. |
required |
col_schema
|
DataType
|
The schema of the column to be created. Defaults to NullType. |
NullType()
|
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
The expression to create the column. |
Examples:
>>> df = spark.createDataFrame([(1, 2),], ['col1', 'col2'])
>>> df.select("*", create_empty_column_if_not_exists('col3', t.IntegerType())).show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| 2|NULL|
+----+----+----+
Source code in src/gentropy/common/spark.py
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
|
gentropy.common.spark.calculate_harmonic_sum(input_array: Column) -> Column
¶
Calculate the harmonic sum of an array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_array
|
Column
|
input array of doubles |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
column of harmonic sums |
Examples:
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame([
... Row([0.3, 0.8, 1.0]),
... Row([0.7, 0.2, 0.9]),
... ], ["input_array"]
... )
>>> df.select("*", f.round(calculate_harmonic_sum(f.col("input_array")), 2).alias("harmonic_sum")).show()
+---------------+------------+
| input_array|harmonic_sum|
+---------------+------------+
|[0.3, 0.8, 1.0]| 0.75|
|[0.7, 0.2, 0.9]| 0.67|
+---------------+------------+
Source code in src/gentropy/common/spark.py
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
|
gentropy.common.spark.clean_strings_from_symbols(source: Column) -> Column
¶
To make strings URL-safe and consistent by lower-casing and replace special characters with underscores.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source
|
Column
|
Source string |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
Cleaned string |
Examples:
>>> d = [("AbCd-12.2",),("AaBb..123?",),("cDd!@#$%^&*()",),]
>>> df = spark.createDataFrame(d).toDF("source")
>>> df.withColumn("cleaned", clean_strings_from_symbols(f.col("source"))).show(truncate=False)
+-------------+---------+
|source |cleaned |
+-------------+---------+
|AbCd-12.2 |abcd-12_2|
|AaBb..123? |aabb_123_|
|cDd!@#$%^&*()|cdd_ |
+-------------+---------+
Source code in src/gentropy/common/spark.py
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
|
gentropy.common.spark.filter_array_struct(array_struct: Column | str, key_column: Column | str, key: Column | str | int | bool | float, value_column: Column | str) -> Column
¶
Extract a value from an array of structs based on a key.
This function searches for the predicate key_column
that matches the key
within the
array_struct
and returns the corresponding value_column
from the struct with
the same index as predicate.
Warning
Only the first match will be returned. If there are multiple matches, one need to sort the array first.
Warning
The function will not work if the key_column
or value_column
are not present in the
array_struct
schema.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
array_struct
|
Column | str
|
The array of structs to be searched. |
required |
key_column
|
Column | str
|
The column name to be used as a key. |
required |
key
|
Column | str | int | bool | float
|
The key to be searched for. |
required |
value_column
|
Column | str
|
The column name to be returned. |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
The value_column from the struct from the same array element as the matched key_column. |
Examples:
>>> data = [([{"a": 1, "b": 2.0, "c": "c", "d": True}, {"a": 3, "b": 4.0, "c": "c", "d": False}], "c")]
>>> schema = 'col array<struct<a:int,b:float,c:string, d:boolean>>, col2 string'
>>> df = spark.createDataFrame(data, schema)
>>> df.show(truncate=False)
+---------------------------------------+----+
|col |col2|
+---------------------------------------+----+
|[{1, 2.0, c, true}, {3, 4.0, c, false}]|c |
+---------------------------------------+----+
>>> df.printSchema()
root
|-- col: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: integer (nullable = true)
| | |-- b: float (nullable = true)
| | |-- c: string (nullable = true)
| | |-- d: boolean (nullable = true)
|-- col2: string (nullable = true)
** Key can be an int **
>>> array_struct = "col"
>>> key_column = "a"
>>> key = 1
>>> value_column = "b"
>>> result = df.select(filter_array_struct(array_struct, key_column, key, value_column))
>>> result.show()
+---+
| b|
+---+
|2.0|
+---+
** Key can be a float **
>>> key_column = "b"
>>> key = 2.0
>>> value_column = "a"
>>> result = df.select(filter_array_struct(array_struct, key_column, key, value_column))
>>> result.show()
+---+
| a|
+---+
| 1|
+---+
** Key can be a string **
>>> key_column = "c"
>>> key = "c"
>>> value_column = "a"
>>> result = df.select(filter_array_struct(array_struct, key_column, key, value_column))
The first match will be returned, even if array have multiple matches to the key.
>>> result.show()
+---+
| a|
+---+
| 1|
+---+
** Key can be a boolean **
>>> key_column = "d"
>>> key = True
>>> value_column = "a"
>>> result = df.select(filter_array_struct(array_struct, key_column, key, value_column))
>>> result.show()
+---+
| a|
+---+
| 1|
+---+
** Key can be a column**
>>> array_struct = f.col("col")
>>> key_column = "c"
>>> key = f.col("col2")
>>> value_column = "b"
>>> result = df.select(filter_array_struct(array_struct, key_column, key, value_column))
>>> result.show()
+---+
| b|
+---+
|2.0|
+---+
** All paramters are columns **
>>> array_struct = f.col("col")
>>> key_column = f.col("c")
>>> key = f.col("col2")
>>> value_column = f.col("a")
>>> result = df.select(filter_array_struct(array_struct, key_column, key, value_column))
>>> result.show()
+---+
| a|
+---+
| 1|
+---+
Source code in src/gentropy/common/spark.py
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 |
|
Operations on PySpark schemas (meta transformations)¶
gentropy.common.spark.enforce_schema(expected_schema: t.ArrayType | t.StructType | Column | str) -> Callable[..., Any]
¶
A function to enforce the schema of a function output follows expectation.
Behavior
- Fields that are not present in the expected schema will be dropped.
- Expected but missing fields will be added with Null values.
- Fields with incorrect data types will be casted to the expected data type.
This is a decorator function and expected to be used like this:
@enforce_schema(spark_schema) def my_function() -> t.StructType: return ...
Parameters:
Name | Type | Description | Default |
---|---|---|---|
expected_schema
|
ArrayType | StructType | Column | str
|
The expected schema of the output. |
required |
Returns:
Type | Description |
---|---|
Callable[..., Any]
|
Callable[..., Any]: A decorator function. |
Source code in src/gentropy/common/spark.py
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|
gentropy.common.spark.get_nested_struct_schema(dtype: t.DataType) -> t.StructType
¶
Get the bottom StructType from a nested ArrayType type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dtype
|
DataType
|
The nested data structure. |
required |
Returns:
Type | Description |
---|---|
StructType
|
t.StructType: The nested struct schema. |
Raises:
Type | Description |
---|---|
TypeError
|
If the input data type is not a nested struct. |
Examples:
>>> get_nested_struct_schema(t.ArrayType(t.StructType([t.StructField('a', t.StringType())])))
StructType([StructField('a', StringType(), True)])
>>> get_nested_struct_schema(t.ArrayType(t.ArrayType(t.StructType([t.StructField("a", t.StringType())]))))
StructType([StructField('a', StringType(), True)])
Source code in src/gentropy/common/spark.py
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
|
gentropy.common.spark.get_struct_field_schema(schema: t.StructType, name: str) -> t.DataType
¶
Get schema for underlying struct field.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
schema
|
StructType
|
Provided schema where the name should be looked in. |
required |
name
|
str
|
Name of the field to look in the schema |
required |
Returns:
Type | Description |
---|---|
DataType
|
t.DataType: Data type of the StructField with provided name |
Raises:
Type | Description |
---|---|
ValueError
|
If provided name is not present in the input schema |
Examples:
>>> get_struct_field_schema(t.StructType([t.StructField("a", t.StringType())]), "a")
StringType()
>>> get_struct_field_schema(t.StructType([t.StructField("a", t.StringType())]), "b")
Traceback (most recent call last):
...
ValueError: Provided name b is not present in the schema
Source code in src/gentropy/common/spark.py
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
|
DataFrame transformations¶
gentropy.common.spark.convert_from_wide_to_long(df: DataFrame, id_vars: Iterable[str], var_name: str, value_name: str, value_vars: Iterable[str] | None = None) -> DataFrame
¶
Converts a dataframe from wide to long format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Dataframe to melt |
required |
id_vars
|
Iterable[str]
|
List of fixed columns to keep |
required |
var_name
|
str
|
Name of the column containing the variable names |
required |
value_name
|
str
|
Name of the column containing the values |
required |
value_vars
|
Iterable[str] | None
|
List of columns to melt. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
Melted dataframe |
Examples:
>>> df = spark.createDataFrame([("a", 1, 2)], ["id", "feature_1", "feature_2"])
>>> convert_from_wide_to_long(df, ["id"], "feature", "value").show()
+---+---------+-----+
| id| feature|value|
+---+---------+-----+
| a|feature_1| 1.0|
| a|feature_2| 2.0|
+---+---------+-----+
Source code in src/gentropy/common/spark.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
gentropy.common.spark.convert_from_long_to_wide(df: DataFrame, id_vars: list[str], var_name: str, value_name: str) -> DataFrame
¶
Converts a dataframe from long to wide format using Spark pivot built-in function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Dataframe to pivot |
required |
id_vars
|
list[str]
|
List of fixed columns to keep |
required |
var_name
|
str
|
Name of the column to pivot on |
required |
value_name
|
str
|
Name of the column containing the values |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
Pivoted dataframe |
Examples:
>>> df = spark.createDataFrame([("a", "feature_1", 1), ("a", "feature_2", 2)], ["id", "featureName", "featureValue"])
>>> convert_from_long_to_wide(df, ["id"], "featureName", "featureValue").show()
+---+---------+---------+
| id|feature_1|feature_2|
+---+---------+---------+
| a| 1| 2|
+---+---------+---------+
Source code in src/gentropy/common/spark.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
gentropy.common.spark.pivot_df(df: DataFrame, pivot_col: str, value_col: str, grouping_cols: list[Column]) -> DataFrame
¶
Pivot a dataframe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Dataframe to pivot |
required |
pivot_col
|
str
|
Column to pivot on |
required |
value_col
|
str
|
Column to pivot |
required |
grouping_cols
|
list[Column]
|
Columns to group by |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
Pivoted dataframe |
Source code in src/gentropy/common/spark.py
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
|
gentropy.common.spark.rename_all_columns(df: DataFrame, prefix: str) -> DataFrame
¶
Given a prefix, rename all columns of a DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The DataFrame to be processed. |
required |
prefix
|
str
|
The prefix to be added to the column names. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
The DataFrame with all columns renamed. |
Examples:
>>> data = [('a', 1.2, True),('b', 0.0, False),('c', None, None),]
>>> prefix = 'prefix_'
>>> rename_all_columns(spark.createDataFrame(data, ['col1', 'col2', 'col3']), prefix).show()
+-----------+-----------+-----------+
|prefix_col1|prefix_col2|prefix_col3|
+-----------+-----------+-----------+
| a| 1.2| true|
| b| 0.0| false|
| c| NULL| NULL|
+-----------+-----------+-----------+
Source code in src/gentropy/common/spark.py
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
|