From VEP
List of features¶
gentropy.dataset.l2g_features.vep.VepMeanFeature
dataclass
¶
Bases: L2GFeature
Average functional consequence score among all variants in a credible set for a studyLocus/gene.
The mean severity score is weighted by the posterior probability of each variant.
Source code in src/gentropy/dataset/l2g_features/vep.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
compute(study_loci_to_annotate: StudyLocus | L2GGoldStandard, feature_dependency: dict[str, Any]) -> VepMeanFeature
classmethod
¶
Computes the feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
study_loci_to_annotate
|
StudyLocus | L2GGoldStandard
|
The dataset containing study loci that will be used for annotation |
required |
feature_dependency
|
dict[str, Any]
|
Dataset that contains the functional consequence information |
required |
Returns:
Name | Type | Description |
---|---|---|
VepMeanFeature |
VepMeanFeature
|
Feature dataset |
Source code in src/gentropy/dataset/l2g_features/vep.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
gentropy.dataset.l2g_features.vep.VepMeanNeighbourhoodFeature
dataclass
¶
Bases: L2GFeature
Mean functional consequence score among all variants in a credible set for a studyLocus/gene relative to the mean VEP score across all protein coding genes in the vicinity.
The mean severity score is weighted by the posterior probability of each variant.
Source code in src/gentropy/dataset/l2g_features/vep.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
compute(study_loci_to_annotate: StudyLocus | L2GGoldStandard, feature_dependency: dict[str, Any]) -> VepMeanNeighbourhoodFeature
classmethod
¶
Computes the feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
study_loci_to_annotate
|
StudyLocus | L2GGoldStandard
|
The dataset containing study loci that will be used for annotation |
required |
feature_dependency
|
dict[str, Any]
|
Dataset that contains the functional consequence information |
required |
Returns:
Name | Type | Description |
---|---|---|
VepMeanNeighbourhoodFeature |
VepMeanNeighbourhoodFeature
|
Feature dataset |
Source code in src/gentropy/dataset/l2g_features/vep.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
gentropy.dataset.l2g_features.vep.VepMaximumFeature
dataclass
¶
Bases: L2GFeature
Maximum functional consequence score among all variants in a credible set for a studyLocus/gene.
Source code in src/gentropy/dataset/l2g_features/vep.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
compute(study_loci_to_annotate: StudyLocus | L2GGoldStandard, feature_dependency: dict[str, Any]) -> VepMaximumFeature
classmethod
¶
Computes the feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
study_loci_to_annotate
|
StudyLocus | L2GGoldStandard
|
The dataset containing study loci that will be used for annotation |
required |
feature_dependency
|
dict[str, Any]
|
Dataset that contains the functional consequence information |
required |
Returns:
Name | Type | Description |
---|---|---|
VepMaximumFeature |
VepMaximumFeature
|
Feature dataset |
Source code in src/gentropy/dataset/l2g_features/vep.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
gentropy.dataset.l2g_features.vep.VepMaximumNeighbourhoodFeature
dataclass
¶
Bases: L2GFeature
Maximum functional consequence score among all variants in a credible set for a studyLocus/gene relative to the mean VEP score across all protein coding genes in the vicinity.
Source code in src/gentropy/dataset/l2g_features/vep.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|
compute(study_loci_to_annotate: StudyLocus | L2GGoldStandard, feature_dependency: dict[str, Any]) -> VepMaximumNeighbourhoodFeature
classmethod
¶
Computes the feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
study_loci_to_annotate
|
StudyLocus | L2GGoldStandard
|
The dataset containing study loci that will be used for annotation |
required |
feature_dependency
|
dict[str, Any]
|
Dataset that contains the functional consequence information |
required |
Returns:
Name | Type | Description |
---|---|---|
VepMaximumNeighbourhoodFeature |
VepMaximumNeighbourhoodFeature
|
Feature dataset |
Source code in src/gentropy/dataset/l2g_features/vep.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|
Common logic¶
gentropy.dataset.l2g_features.vep.common_vep_feature_logic(study_loci_to_annotate: L2GGoldStandard | StudyLocus, *, variant_index: VariantIndex, feature_name: str) -> DataFrame
¶
Extracts variant severity score computed from VEP.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
study_loci_to_annotate
|
L2GGoldStandard | StudyLocus
|
The dataset containing study loci that will be used for annotation |
required |
variant_index
|
VariantIndex
|
The dataset containing functional consequence information |
required |
feature_name
|
str
|
The name of the feature |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
Feature dataset |
Source code in src/gentropy/dataset/l2g_features/vep.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
gentropy.dataset.l2g_features.vep.common_neighbourhood_vep_feature_logic(study_loci_to_annotate: StudyLocus | L2GGoldStandard, *, variant_index: VariantIndex, gene_index: GeneIndex, feature_name: str) -> DataFrame
¶
Extracts variant severity score computed from VEP for any gene, based on what is the max score for protein coding genes that are nearby the locus.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
study_loci_to_annotate
|
StudyLocus | L2GGoldStandard
|
The dataset containing study loci that will be used for annotation |
required |
variant_index
|
VariantIndex
|
The dataset containing functional consequence information |
required |
gene_index
|
GeneIndex
|
The dataset containing the gene biotype |
required |
feature_name
|
str
|
The name of the feature |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
Feature dataset |
Source code in src/gentropy/dataset/l2g_features/vep.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|