L2G Prediction
gentropy.dataset.l2g_prediction.L2GPrediction
dataclass
¶
Bases: Dataset
Dataset that contains the Locus to Gene predictions.
It is the result of applying the L2G model on a feature matrix, which contains all the study/locus pairs and their functional annotations. The score column informs the confidence of the prediction that a gene is causal to an association.
Source code in src/gentropy/dataset/l2g_prediction.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
|
add_features(feature_matrix: L2GFeatureMatrix) -> L2GPrediction
¶
Add features used to extract the L2G predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feature_matrix
|
L2GFeatureMatrix
|
Feature matrix dataset |
required |
Returns:
Name | Type | Description |
---|---|---|
L2GPrediction |
L2GPrediction
|
L2G predictions with additional column |
Raises:
Type | Description |
---|---|
ValueError
|
If model is not set, feature list won't be available |
Source code in src/gentropy/dataset/l2g_prediction.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
|
explain(feature_matrix: L2GFeatureMatrix | None = None) -> L2GPrediction
¶
Extract Shapley values for the L2G predictions and add them as a map in an additional column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feature_matrix
|
L2GFeatureMatrix | None
|
Feature matrix in case the predictions are missing the feature annotation. If None, the features are fetched from the dataset. |
None
|
Returns:
Name | Type | Description |
---|---|---|
L2GPrediction |
L2GPrediction
|
L2GPrediction object with additional column containing feature name to Shapley value mappings |
Raises:
Type | Description |
---|---|
ValueError
|
If the model is not set or If feature matrix is not provided and the predictions do not have features |
Source code in src/gentropy/dataset/l2g_prediction.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
from_credible_set(session: Session, credible_set: StudyLocus, feature_matrix: L2GFeatureMatrix, model_path: str | None, features_list: list[str] | None = None, hf_token: str | None = None, hf_model_version: str | None = None, download_from_hub: bool = True) -> L2GPrediction
classmethod
¶
Extract L2G predictions for a set of credible sets derived from GWAS.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
session
|
Session
|
Session object that contains the Spark session |
required |
credible_set
|
StudyLocus
|
Dataset containing credible sets from GWAS only |
required |
feature_matrix
|
L2GFeatureMatrix
|
Dataset containing all credible sets and their annotations |
required |
model_path
|
str | None
|
Path to the model file. It can be either in the filesystem or the name on the Hugging Face Hub (in the form of username/repo_name). |
required |
features_list
|
list[str] | None
|
Default list of features the model uses. Only used if the model is not downloaded from the Hub. CAUTION: This default list can differ from the actual list the model was trained on. |
None
|
hf_token
|
str | None
|
Hugging Face token to download the model from the Hub. Only required if the model is private. |
None
|
hf_model_version
|
str | None
|
Tag, branch, or commit hash to download the model from the Hub. If None, the latest commit is downloaded. |
None
|
download_from_hub
|
bool
|
Whether to download the model from the Hugging Face Hub. Defaults to True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
L2GPrediction |
L2GPrediction
|
L2G scores for a set of credible sets. |
Raises:
Type | Description |
---|---|
AttributeError
|
If |
Source code in src/gentropy/dataset/l2g_prediction.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
get_schema() -> StructType
classmethod
¶
Provides the schema for the L2GPrediction dataset.
Returns:
Name | Type | Description |
---|---|---|
StructType |
StructType
|
Schema for the L2GPrediction dataset |
Source code in src/gentropy/dataset/l2g_prediction.py
39 40 41 42 43 44 45 46 |
|
to_disease_target_evidence(study_locus: StudyLocus, study_index: StudyIndex, l2g_threshold: float = 0.05) -> DataFrame
¶
Convert locus to gene predictions to disease target evidence.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
study_locus
|
StudyLocus
|
Study locus dataset |
required |
study_index
|
StudyIndex
|
Study index dataset |
required |
l2g_threshold
|
float
|
Threshold to consider a gene as a target. Defaults to 0.05. |
0.05
|
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
Disease target evidence |
Source code in src/gentropy/dataset/l2g_prediction.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
Schema¶
root
|-- studyLocusId: string (nullable = false)
|-- geneId: string (nullable = false)
|-- score: double (nullable = false)
|-- features: array (nullable = true)
| |-- element: struct (containsNull = false)
| | |-- name: string (nullable = false)
| | |-- value: float (nullable = false)
| | |-- shapValue: float (nullable = true)
|-- shapBaseValue: float (nullable = true)