Summary Statistics
gentropy.dataset.summary_statistics.SummaryStatistics
dataclass
¶
Bases: Dataset
Summary Statistics dataset.
A summary statistics dataset contains all single point statistics resulting from a GWAS.
Source code in src/gentropy/dataset/summary_statistics.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
exclude_region(region: GenomicRegion) -> SummaryStatistics
¶
Exclude a region from the summary stats dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
region
|
GenomicRegion
|
Genomic region to be excluded. |
required |
Returns:
Name | Type | Description |
---|---|---|
SummaryStatistics |
SummaryStatistics
|
filtered summary statistics. |
Source code in src/gentropy/dataset/summary_statistics.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
get_schema() -> StructType
classmethod
¶
Provides the schema for the SummaryStatistics dataset.
Returns:
Name | Type | Description |
---|---|---|
StructType |
StructType
|
Schema for the SummaryStatistics dataset |
Source code in src/gentropy/dataset/summary_statistics.py
29 30 31 32 33 34 35 36 |
|
locus_breaker_clumping(baseline_pvalue_cutoff: float = LocusBreakerClumpingConfig.lbc_baseline_pvalue, distance_cutoff: int = LocusBreakerClumpingConfig.lbc_distance_cutoff, pvalue_cutoff: float = LocusBreakerClumpingConfig.lbc_pvalue_threshold, flanking_distance: int = LocusBreakerClumpingConfig.lbc_flanking_distance) -> StudyLocus
¶
Generate study-locus from summary statistics using locus-breaker clumping method with locus boundaries.
For more info, see locus_breaker
Parameters:
Name | Type | Description | Default |
---|---|---|---|
baseline_pvalue_cutoff
|
float
|
Baseline significance we consider for the locus. |
lbc_baseline_pvalue
|
distance_cutoff
|
int
|
Distance in base pairs to be used for clumping. |
lbc_distance_cutoff
|
pvalue_cutoff
|
float
|
GWAS significance threshold. |
lbc_pvalue_threshold
|
flanking_distance
|
int
|
Flank distance in base pairs to be used for clumping. |
lbc_flanking_distance
|
Returns:
Name | Type | Description |
---|---|---|
StudyLocus |
StudyLocus
|
Clumped study-locus optionally containing variants based on window. |
StudyLocus
|
Check LocusBreakerClumpingConfig object for default values. |
Source code in src/gentropy/dataset/summary_statistics.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
pvalue_filter(pvalue: float) -> SummaryStatistics
¶
Filter summary statistics based on the provided p-value threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pvalue
|
float
|
upper limit of the p-value to be filtered upon. |
required |
Returns:
Name | Type | Description |
---|---|---|
SummaryStatistics |
SummaryStatistics
|
summary statistics object containing single point associations with p-values at least as significant as the provided threshold. |
Source code in src/gentropy/dataset/summary_statistics.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
sanity_filter() -> SummaryStatistics
¶
The function filters the summary statistics by sanity filters.
The function filters the summary statistics by the following filters
- The p-value should be less than 1.
- The pValueMantissa should be greater than 0.
- The beta should not be equal 0.
- The p-value, beta and se should not be NaN.
- The se should be positive.
- The beta and se should not be infinite.
Returns:
Name | Type | Description |
---|---|---|
SummaryStatistics |
SummaryStatistics
|
The filtered summary statistics. |
Source code in src/gentropy/dataset/summary_statistics.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
window_based_clumping(distance: int = WindowBasedClumpingStepConfig().distance, gwas_significance: float = WindowBasedClumpingStepConfig().gwas_significance) -> StudyLocus
¶
Generate study-locus from summary statistics using window-based clumping.
For more info, see WindowBasedClumping
Parameters:
Name | Type | Description | Default |
---|---|---|---|
distance
|
int
|
Distance in base pairs to be used for clumping. Defaults to 500_000. |
distance
|
gwas_significance
|
float
|
GWAS significance threshold. Defaults to 5e-8. |
gwas_significance
|
Returns:
Name | Type | Description |
---|---|---|
StudyLocus |
StudyLocus
|
Clumped study-locus optionally containing variants based on window. |
StudyLocus
|
Check WindowBasedClumpingStepConfig object for default values. |
Source code in src/gentropy/dataset/summary_statistics.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
Schema¶
root
|-- studyId: string (nullable = false)
|-- variantId: string (nullable = false)
|-- chromosome: string (nullable = false)
|-- position: integer (nullable = false)
|-- beta: double (nullable = false)
|-- sampleSize: integer (nullable = true)
|-- pValueMantissa: float (nullable = false)
|-- pValueExponent: integer (nullable = false)
|-- effectAlleleFrequencyFromSource: float (nullable = true)
|-- standardError: double (nullable = true)