Variant Direction
gentropy.dataset.variant_direction.Direction
¶
Bases: int, Enum
Allele direction.
Attributes:
| Name | Type | Description |
|---|---|---|
DIRECT |
int
|
Direct allele direction (e.g., A/G). Defaults to 1. |
FLIPPED |
int
|
Flipped allele direction (e.g., G/A). Defaults to -1. |
Source code in src/gentropy/dataset/variant_direction.py
17 18 19 20 21 22 23 24 25 26 | |
gentropy.dataset.variant_direction.Strand
¶
Bases: int, Enum
Strand orientation.
Attributes:
| Name | Type | Description |
|---|---|---|
FORWARD |
int
|
Forward strand. Defaults to 1. |
REVERSE |
int
|
Reverse strand. Defaults to -1. |
Source code in src/gentropy/dataset/variant_direction.py
29 30 31 32 33 34 35 36 37 38 | |
gentropy.dataset.variant_direction.VariantType
¶
Bases: int, Enum
Variant types based on length of reference and alternate alleles.
Attributes:
| Name | Type | Description |
|---|---|---|
SNP |
int
|
Single Nucleotide Polymorphism. Defaults to 1. |
INS |
int
|
Insertion. Defaults to 2. |
DEL |
int
|
Deletion. Defaults to 3. |
MNP |
int
|
Multi-Nucleotide Polymorphism. Defaults to 4. |
Source code in src/gentropy/dataset/variant_direction.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 | |
gentropy.dataset.variant_direction.VariantDirection
dataclass
¶
Bases: Dataset
Dataset used for aligning allele directionality between different datasets.
This dataset is useful for flipping alleles to match reference datasets.
This dataset expends each variant into 4 entries to account for
- Different directions (
FORWARDandFLIPPED) - e.g. A/G and G/A - Different strands (
FORWARDandREVERSE) - e.g. A/G and T/C
Each entry contains the combination of both, meaning that for each input variant
there will be 4 entries in this dataset. For strand ambiguous variants the
FORWARD and FLIPPED entries will be identical to the REVERSE and FLIPPED entries,
so we keep only one copy of them.
Additionally this dataset annotates:
- ambiguous strand variants
- type of variant (SNP, INS, DEL, MNP)
- original allele frequencies from the source dataset
- original variant id from the source dataset
Joining with other datasets
To compare two datasets, you need to ensure that both datasets are joined on the variantId that
is a combination of chromosome, position, reference allele and alternate allele.
Building the dataset
The easiest way to create this dataset (have a complete variant space) is to build it from a VariantIndex.
Examples:
>>> data = [("1", 100, "A", "G", [("nfe_adj", 0.1), ("fin_adj", 0.2)]), ("1", 100, "T", "A", [("nfe_adj", 0.1), ("fin_adj", 0.2)])]
>>> schema = "chromosome STRING, position INT, referenceAllele STRING, alternateAllele STRING, alleleFrequencies ARRAY<STRUCT<populationName: STRING, alleleFrequency: DOUBLE>>"
>>> df = spark.createDataFrame(data, schema).withColumn("variantId",
... f.concat_ws("_", "chromosome", "position", "referenceAllele", "alternateAllele"))
>>> variant_index = VariantIndex(_df=df)
>>> variant_direction = VariantDirection.from_variant_index(variant_index)
>>> variant_direction.df.show(truncate=False)
+----------+-----------------+----+---------+---------+------+-----------------+--------------------------------+
|chromosome|originalVariantId|type|variantId|direction|strand|isStrandAmbiguous|originalAlleleFrequencies |
+----------+-----------------+----+---------+---------+------+-----------------+--------------------------------+
|1 |1_100_A_G |1 |1_100_A_G|1 |1 |false |[{nfe_adj, 0.1}, {fin_adj, 0.2}]|
|1 |1_100_A_G |1 |1_100_G_A|-1 |1 |false |[{nfe_adj, 0.1}, {fin_adj, 0.2}]|
|1 |1_100_A_G |1 |1_100_T_C|1 |-1 |false |[{nfe_adj, 0.1}, {fin_adj, 0.2}]|
|1 |1_100_A_G |1 |1_100_C_T|-1 |-1 |false |[{nfe_adj, 0.1}, {fin_adj, 0.2}]|
|1 |1_100_T_A |1 |1_100_T_A|1 |1 |true |[{nfe_adj, 0.1}, {fin_adj, 0.2}]|
|1 |1_100_T_A |1 |1_100_A_T|-1 |1 |true |[{nfe_adj, 0.1}, {fin_adj, 0.2}]|
+----------+-----------------+----+---------+---------+------+-----------------+--------------------------------+
Source code in src/gentropy/dataset/variant_direction.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | |
alleles(chrom: Column, pos: Column, ref: Column, alt: Column, af: Column) -> Column
classmethod
¶
Get the alleles of the variant.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
chrom
|
Column
|
Chromosome column. |
required |
pos
|
Column
|
Position column. |
required |
ref
|
Column
|
Reference allele column. |
required |
alt
|
Column
|
Alternate allele column. |
required |
af
|
Column
|
Allele frequencies column. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
Column |
Column
|
Array of structs with variantId, direction, strand, isStrandAmbiguous, alleleFrequencies. |
Examples:
>>> data = [("1", 100, "A", "G", [("nfe_adj", 0.1),]), ("1", 100, "T", "A", [("nfe_adj", 0.1),])]
>>> schema = "chrom STRING, pos INT, ref STRING, alt STRING, af ARRAY<STRUCT<populationName: STRING, alleleFrequency: DOUBLE>>"
>>> df = spark.createDataFrame(data, schema)
>>> df = df.withColumn("alleles", VariantDirection.alleles(f.col("chrom"), f.col("pos"), f.col("ref"), f.col("alt"), f.col("af"))).select("alleles")
>>> df.select(f.explode("alleles").alias("allele")).select("allele.*").show(truncate=False)
+---------+---------+------+-----------------+-------------------------+
|variantId|direction|strand|isStrandAmbiguous|originalAlleleFrequencies|
+---------+---------+------+-----------------+-------------------------+
|1_100_A_G|1 |1 |false |[{nfe_adj, 0.1}] |
|1_100_G_A|-1 |1 |false |[{nfe_adj, 0.1}] |
|1_100_T_C|1 |-1 |false |[{nfe_adj, 0.1}] |
|1_100_C_T|-1 |-1 |false |[{nfe_adj, 0.1}] |
|1_100_T_A|1 |1 |true |[{nfe_adj, 0.1}] |
|1_100_A_T|-1 |1 |true |[{nfe_adj, 0.1}] |
+---------+---------+------+-----------------+-------------------------+
Source code in src/gentropy/dataset/variant_direction.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | |
complement(allele: Column) -> Column
staticmethod
¶
Complement the allele string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
allele
|
Column
|
Allele column. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
Column |
Column
|
Complemented allele column. |
Examples:
>>> data = [("A",), ("C",), ("G",), ("T",), ("AT",), ("GTC",)]
>>> schema = "allele STRING"
>>> df = spark.createDataFrame(data, schema)
>>> df.withColumn("complemented", VariantDirection.complement(f.col("allele"))).show()
+------+------------+
|allele|complemented|
+------+------------+
| A| T|
| C| G|
| G| C|
| T| A|
| AT| TA|
| GTC| CAG|
+------+------------+
Source code in src/gentropy/dataset/variant_direction.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | |
from_variant_index(variant_index: VariantIndex) -> VariantDirection
classmethod
¶
Prepare the variant direction DataFrame with DIRECT and FLIPPED entries.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
variant_index
|
VariantIndex
|
Variant index dataset. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
VariantDirection |
VariantDirection
|
Variant direction dataset. |
Source code in src/gentropy/dataset/variant_direction.py
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | |
get_schema() -> t.StructType
classmethod
¶
Provides the schema for the variant index dataset.
Returns:
| Type | Description |
|---|---|
StructType
|
t.StructType: Schema for the VariantIndex dataset |
Source code in src/gentropy/dataset/variant_direction.py
110 111 112 113 114 115 116 117 | |
is_strand_ambiguous(ref: Column, alt: Column) -> Column
classmethod
¶
Check if the variant is strand ambiguous.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ref
|
Column
|
Reference allele column. |
required |
alt
|
Column
|
Alternate allele column. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
Column |
Column
|
Boolean column indicating if the variant is palindromic. |
Examples:
>>> data = [("A", "T"), ("C", "G"), ("A", "G"), ("AC", "GT"), ("AT", "TA"), ("A", "AT")]
>>> schema = "ref STRING, alt STRING"
>>> df = spark.createDataFrame(data, schema)
>>> df.withColumn("isStrandAmbiguous", VariantDirection.is_strand_ambiguous(f.col("ref"), f.col("alt"))).show()
+---+---+-----------------+
|ref|alt|isStrandAmbiguous|
+---+---+-----------------+
| A| T| true|
| C| G| true|
| A| G| false|
| AC| GT| true|
| AT| TA| false|
| A| AT| false|
+---+---+-----------------+
Source code in src/gentropy/dataset/variant_direction.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | |
reverse(allele: Column) -> Column
staticmethod
¶
Reverse the allele string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
allele
|
Column
|
Allele column. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
Column |
Column
|
Reversed allele column. |
Examples:
>>> data = [("A",), ("AT",), ("GTC",)]
>>> schema = "allele STRING"
>>> df = spark.createDataFrame(data, schema)
>>> df.withColumn("reversed", VariantDirection.reverse(f.col("allele"))).show()
+------+--------+
|allele|reversed|
+------+--------+
| A| A|
| AT| TA|
| GTC| CTG|
+------+--------+
Source code in src/gentropy/dataset/variant_direction.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | |
variant_id(chrom: Column, pos: Column, ref: Column, alt: Column) -> Column
classmethod
¶
Get the variant id.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
chrom
|
Column
|
Chromosome column. |
required |
pos
|
Column
|
Position column. |
required |
ref
|
Column
|
Reference allele column. |
required |
alt
|
Column
|
Alternate allele column. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
Column |
Column
|
Variant ID column in the format "chrom_pos_ref_alt". |
Source code in src/gentropy/dataset/variant_direction.py
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | |
variant_type(ref: Column, alt: Column) -> Column
classmethod
¶
Get the variant type.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ref
|
Column
|
Reference allele column. |
required |
alt
|
Column
|
Alternate allele column. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
Column |
Column
|
Variant type column. |
Note
Variant type coding follows VariantType enum: - 1: SNP (Single Nucleotide Polymorphism) - 2: INS (Insertion) - 3: DEL (Deletion) - 4: MNP (Multi-Nucleotide Polymorphism)
Examples:
>>> data = [("A", "G"), ("A", "AT"), ("AT", "A"), ("AT", "GC")]
>>> schema = "ref STRING, alt STRING"
>>> df = spark.createDataFrame(data, schema)
>>> df.withColumn("type", VariantDirection.variant_type(f.col("ref"), f.col("alt"))).show()
+---+---+----+
|ref|alt|type|
+---+---+----+
| A| G| 1|
| A| AT| 2|
| AT| A| 3|
| AT| GC| 4|
+---+---+----+
Source code in src/gentropy/dataset/variant_direction.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | |
Schema¶
root
|-- chromosome: string (nullable = true)
|-- originalVariantId: string (nullable = false)
|-- type: byte (nullable = false)
|-- variantId: string (nullable = false)
|-- direction: byte (nullable = false)
|-- strand: byte (nullable = false)
|-- isStrandAmbiguous: boolean (nullable = false)
|-- originalAlleleFrequencies: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- populationName: string (nullable = true)
| | |-- alleleFrequency: double (nullable = true)