27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134 | class VariantEffectPredictorParser:
"""Collection of methods to parse VEP output in json format."""
# NOTE: Due to the fact that the comparison of the xrefs is done om the base of rsids
# if the field `colocalised_variants` have multiple rsids, this extracting xrefs will result in
# an array of xref structs, rather then the struct itself.
DBXREF_SCHEMA = VariantIndex.get_schema()["dbXrefs"].dataType
# Schema description of the in silico predictor object:
IN_SILICO_PREDICTOR_SCHEMA = get_nested_struct_schema(
VariantIndex.get_schema()["inSilicoPredictors"]
)
# Schema for the allele frequency column:
ALLELE_FREQUENCY_SCHEMA = VariantIndex.get_schema()["alleleFrequencies"].dataType
# Consequence to sequence ontology map:
SEQUENCE_ONTOLOGY_MAP = {
item["label"]: item["id"]
for item in VariantIndexConfig.consequence_to_pathogenicity_score
}
# Sequence ontology to score map:
LABEL_TO_SCORE_MAP = {
item["label"]: item["score"]
for item in VariantIndexConfig.consequence_to_pathogenicity_score
}
@staticmethod
def get_schema() -> t.StructType:
"""Return the schema of the VEP output.
Returns:
t.StructType: VEP output schema.
Examples:
>>> type(VariantEffectPredictorParser.get_schema())
<class 'pyspark.sql.types.StructType'>
"""
return parse_spark_schema("vep_json_output.json")
@classmethod
def extract_variant_index_from_vep(
cls: type[VariantEffectPredictorParser],
spark: SparkSession,
vep_output_path: str | list[str],
hash_threshold: int,
**kwargs: bool | float | int | str | None,
) -> VariantIndex:
"""Extract variant index from VEP output.
Args:
spark (SparkSession): Spark session.
vep_output_path (str | list[str]): Path to the VEP output.
hash_threshold (int): Threshold above which variant identifiers will be hashed.
**kwargs (bool | float | int | str | None): Additional arguments to pass to spark.read.json.
Returns:
VariantIndex: Variant index dataset.
Raises:
ValueError: Failed reading file or if the dataset is empty.
"""
# To speed things up and simplify the json structure, read data following an expected schema:
vep_schema = cls.get_schema()
try:
vep_data = spark.read.json(vep_output_path, schema=vep_schema, **kwargs)
except ValueError as e:
raise ValueError(f"Failed reading file: {vep_output_path}.") from e
if vep_data.isEmpty():
raise ValueError(f"The dataset is empty: {vep_output_path}")
# Convert to VariantAnnotation dataset:
return VariantIndex(
_df=VariantEffectPredictorParser.process_vep_output(
vep_data, hash_threshold
),
_schema=VariantIndex.get_schema(),
id_threshold=hash_threshold,
)
@staticmethod
def _extract_ensembl_xrefs(colocated_variants: Column) -> Column:
"""Extract rs identifiers and build cross reference to Ensembl's variant page.
Args:
colocated_variants (Column): Colocated variants field from VEP output.
Returns:
Column: List of dbXrefs for rs identifiers.
"""
return VariantEffectPredictorParser._generate_dbxrefs(
VariantEffectPredictorParser._colocated_variants_to_rsids(
colocated_variants
),
"ensembl_variation",
)
@enforce_schema(DBXREF_SCHEMA)
@staticmethod
def _generate_dbxrefs(ids: Column, source: str) -> Column:
"""Convert a list of variant identifiers to dbXrefs given the source label.
Identifiers are cast to strings, then Null values are filtered out of the id list.
Args:
ids (Column): List of variant identifiers.
source (str): Source label for the dbXrefs.
Returns:
Column: List of dbXrefs.
Examples:
>>> (
... spark.createDataFrame([('rs12',),(None,)], ['test_id'])
... .select(VariantEffectPredictorParser._generate_dbxrefs(f.array(f.col('test_id')), "ensemblVariation").alias('col'))
... .show(truncate=False)
... )
+--------------------------+
|col |
+--------------------------+
|[{rs12, ensemblVariation}]|
|[] |
+--------------------------+
<BLANKLINE>
>>> (
... spark.createDataFrame([('rs12',),(None,)], ['test_id'])
... .select(VariantEffectPredictorParser._generate_dbxrefs(f.array(f.col('test_id')), "ensemblVariation").alias('col'))
... .first().col[0].asDict()
... )
{'id': 'rs12', 'source': 'ensemblVariation'}
"""
ids = f.filter(ids, lambda id: id.isNotNull())
xref_column = f.transform(
ids,
lambda id: f.struct(
id.cast(t.StringType()).alias("id"), f.lit(source).alias("source")
),
)
return f.when(xref_column.isNull(), f.array()).otherwise(xref_column)
@staticmethod
def _colocated_variants_to_rsids(colocated_variants: Column) -> Column:
"""Extract rs identifiers from the colocated variants VEP field.
Args:
colocated_variants (Column): Colocated variants field from VEP output.
Returns:
Column: List of rs identifiers.
Examples:
>>> data = [('s1', 'rs1'),('s1', 'rs2'),('s1', 'rs3'),('s2', None),]
>>> (
... spark.createDataFrame(data, ['s','v'])
... .groupBy('s')
... .agg(f.collect_list(f.struct(f.col('v').alias('id'))).alias('cv'))
... .select(VariantEffectPredictorParser._colocated_variants_to_rsids(f.col('cv')).alias('rsIds'),)
... .show(truncate=False)
... )
+---------------+
|rsIds |
+---------------+
|[rs1, rs2, rs3]|
|[null] |
+---------------+
<BLANKLINE>
"""
return f.when(
colocated_variants.isNotNull(),
f.transform(
colocated_variants, lambda variant: variant.getItem("id").alias("id")
),
).alias("rsIds")
@staticmethod
def _extract_omim_xrefs(colocated_variants: Column) -> Column:
"""Build xdbRefs for OMIM identifiers.
OMIM identifiers are extracted from the colocated variants field, casted to strings and formatted as dbXrefs.
Args:
colocated_variants (Column): Colocated variants field from VEP output.
Returns:
Column: List of dbXrefs for OMIM identifiers.
Examples:
>>> data = [('234234.32', 'rs1', 's1',),(None, 'rs1', 's1',),]
>>> (
... spark.createDataFrame(data, ['id', 'rsid', 's'])
... .groupBy('s')
... .agg(f.collect_list(f.struct(f.struct(f.array(f.col('id')).alias('OMIM')).alias('var_synonyms'),f.col('rsid').alias('id'),),).alias('cv'),).select(VariantEffectPredictorParser._extract_omim_xrefs(f.col('cv')).alias('dbXrefs'))
... .show(truncate=False)
... )
+-------------------+
|dbXrefs |
+-------------------+
|[{234234#32, omim}]|
+-------------------+
<BLANKLINE>
"""
variants_w_omim_ref = f.filter(
colocated_variants,
lambda variant: variant.getItem("var_synonyms").getItem("OMIM").isNotNull(),
)
omim_var_ids = f.transform(
variants_w_omim_ref,
lambda var: f.transform(
var.getItem("var_synonyms").getItem("OMIM"),
lambda var: f.regexp_replace(var.cast(t.StringType()), r"\.", r"#"),
),
)
return VariantEffectPredictorParser._generate_dbxrefs(
f.flatten(omim_var_ids), "omim"
)
@staticmethod
def _extract_clinvar_xrefs(colocated_variants: Column) -> Column:
"""Build xdbRefs for VCV ClinVar identifiers.
ClinVar identifiers are extracted from the colocated variants field.
VCV-identifiers are filtered out to generate cross-references.
Args:
colocated_variants (Column): Colocated variants field from VEP output.
Returns:
Column: List of dbXrefs for VCV ClinVar identifiers.
Examples:
>>> data = [('VCV2323,RCV3423', 'rs1', 's1',),(None, 'rs1', 's1',),]
>>> (
... spark.createDataFrame(data, ['id', 'rsid', 's'])
... .groupBy('s')
... .agg(f.collect_list(f.struct(f.struct(f.split(f.col('id'),',').alias('ClinVar')).alias('var_synonyms'),f.col('rsid').alias('id'),),).alias('cv'),).select(VariantEffectPredictorParser._extract_clinvar_xrefs(f.col('cv')).alias('dbXrefs'))
... .show(truncate=False)
... )
+--------------------+
|dbXrefs |
+--------------------+
|[{VCV2323, clinvar}]|
+--------------------+
<BLANKLINE>
"""
variants_w_clinvar_ref = f.filter(
colocated_variants,
lambda variant: variant.getItem("var_synonyms")
.getItem("ClinVar")
.isNotNull(),
)
clin_var_ids = f.transform(
variants_w_clinvar_ref,
lambda var: f.filter(
var.getItem("var_synonyms").getItem("ClinVar"),
lambda x: x.startswith("VCV"),
),
)
return VariantEffectPredictorParser._generate_dbxrefs(
f.flatten(clin_var_ids), "clinvar"
)
@staticmethod
def _get_most_severe_transcript(
transcript_column_name: str, score_field_name: str
) -> Column:
"""Return transcript with the highest in silico predicted score.
This method assumes the higher the score, the more severe the consequence of the variant is.
Hence, by selecting the transcript with the highest score, we are selecting the most severe consequence.
Args:
transcript_column_name (str): Name of the column containing the list of transcripts.
score_field_name (str): Name of the field containing the severity score.
Returns:
Column: Most severe transcript.
Examples:
>>> data = [("v1", 0.2, 'transcript1'),("v1", None, 'transcript2'),("v1", 0.6, 'transcript3'),("v1", 0.4, 'transcript4'),]
>>> (
... spark.createDataFrame(data, ['v', 'score', 'transcriptId'])
... .groupBy('v')
... .agg(f.collect_list(f.struct(f.col('score'),f.col('transcriptId'))).alias('transcripts'))
... .select(VariantEffectPredictorParser._get_most_severe_transcript('transcripts', 'score').alias('most_severe_transcript'))
... .show(truncate=False)
... )
+----------------------+
|most_severe_transcript|
+----------------------+
|{0.6, transcript3} |
+----------------------+
<BLANKLINE>
"""
assert isinstance(
transcript_column_name, str
), "transcript_column_name must be a string and not a column."
# Order transcripts by severity score:
ordered_transcripts = order_array_of_structs_by_field(
transcript_column_name, score_field_name
)
# Drop transcripts with no severity score and return the most severe one:
return f.filter(
ordered_transcripts,
lambda transcript: transcript.getItem(score_field_name).isNotNull(),
)[0]
@classmethod
@enforce_schema(IN_SILICO_PREDICTOR_SCHEMA)
def _get_vep_prediction(cls, most_severe_consequence: Column) -> Column:
return f.struct(
f.lit("VEP").alias("method"),
most_severe_consequence.alias("assessment"),
map_column_by_dictionary(
most_severe_consequence, cls.LABEL_TO_SCORE_MAP
).alias("score"),
)
@staticmethod
@enforce_schema(IN_SILICO_PREDICTOR_SCHEMA)
def _get_max_alpha_missense(transcripts: Column) -> Column:
"""Return the most severe alpha missense prediction from all transcripts.
This function assumes one variant can fall onto only one gene with alpha-sense prediction available on the canonical transcript.
Args:
transcripts (Column): List of transcripts.
Returns:
Column: Most severe alpha missense prediction.
Examples:
>>> data = [('v1', 0.4, 'assessment 1'), ('v1', None, None), ('v1', None, None),('v2', None, None),]
>>> (
... spark.createDataFrame(data, ['v', 'a', 'b'])
... .groupBy('v')
... .agg(f.collect_list(f.struct(f.struct(
... f.col('a').alias('am_pathogenicity'),
... f.col('b').alias('am_class')).alias('alphamissense'),
... f.lit('gene1').alias('gene_id'))).alias('transcripts')
... )
... .select(VariantEffectPredictorParser._get_max_alpha_missense(f.col('transcripts')).alias('am'))
... .show(truncate=False)
... )
+-----------------------------------------------------+
|am |
+-----------------------------------------------------+
|{AlphaMissense, assessment 1, 0.4, null, gene1, null}|
|{AlphaMissense, null, null, null, gene1, null} |
+-----------------------------------------------------+
<BLANKLINE>
"""
# Extracting transcript with alpha missense values:
transcript = f.filter(
transcripts,
lambda transcript: transcript.getItem("alphamissense").isNotNull(),
)[0]
return f.when(
transcript.isNotNull(),
f.struct(
# Adding method:
f.lit("AlphaMissense").alias("method"),
# Extracting assessment:
transcript.alphamissense.am_class.alias("assessment"),
# Extracting score:
transcript.alphamissense.am_pathogenicity.cast(t.FloatType()).alias(
"score"
),
# Adding assessment flag:
f.lit(None).cast(t.StringType()).alias("assessmentFlag"),
# Extracting target id:
transcript.gene_id.alias("targetId"),
),
)
@classmethod
@enforce_schema(IN_SILICO_PREDICTOR_SCHEMA)
def _vep_in_silico_prediction_extractor(
cls: type[VariantEffectPredictorParser],
transcript_column_name: str,
method_name: str,
score_column_name: str | None = None,
assessment_column_name: str | None = None,
assessment_flag_column_name: str | None = None,
) -> Column:
"""Extract in silico prediction from VEP output.
Args:
transcript_column_name (str): Name of the column containing the list of transcripts.
method_name (str): Name of the in silico predictor.
score_column_name (str | None): Name of the column containing the score.
assessment_column_name (str | None): Name of the column containing the assessment.
assessment_flag_column_name (str | None): Name of the column containing the assessment flag.
Returns:
Column: In silico predictor.
"""
# Get transcript with the highest score:
most_severe_transcript: Column = (
# Getting the most severe transcript:
VariantEffectPredictorParser._get_most_severe_transcript(
transcript_column_name, score_column_name
)
if score_column_name is not None
# If we don't have score, just pick one of the transcript where assessment is available:
else f.filter(
f.col(transcript_column_name),
lambda transcript: transcript.getItem(
assessment_column_name
).isNotNull(),
)
)
# Get assessment:
assessment = (
f.lit(None).cast(t.StringType()).alias("assessment")
if assessment_column_name is None
else most_severe_transcript.getField(assessment_column_name).alias(
"assessment"
)
)
# Get score:
score = (
f.lit(None).cast(t.FloatType()).alias("score")
if score_column_name is None
else most_severe_transcript.getField(score_column_name)
.cast(t.FloatType())
.alias("score")
)
# Get assessment flag:
assessment_flag = (
f.lit(None).cast(t.StringType()).alias("assessmentFlag")
if assessment_flag_column_name is None
else most_severe_transcript.getField(assessment_flag_column_name)
.cast(t.StringType())
.alias("assessmentFlag")
)
# Extract gene id:
gene_id = most_severe_transcript.getItem("gene_id").alias("targetId")
return f.when(
most_severe_transcript.isNotNull(),
f.struct(
f.lit(method_name).alias("method"),
assessment,
score,
assessment_flag,
gene_id,
),
)
@staticmethod
def _parser_amino_acid_change(amino_acids: Column, protein_end: Column) -> Column:
"""Convert VEP amino acid change information to one letter code aa substitution code.
The logic assumes that the amino acid change is given in the format "from/to" and the protein end is given also.
If any of the information is missing, the amino acid change will be set to None.
Args:
amino_acids (Column): Amino acid change information.
protein_end (Column): Protein end information.
Returns:
Column: Amino acid change in one letter code.
Examples:
>>> data = [('A/B', 1),('A/B', None),(None, 1),]
>>> (
... spark.createDataFrame(data, ['amino_acids', 'protein_end'])
... .select(VariantEffectPredictorParser._parser_amino_acid_change(f.col('amino_acids'), f.col('protein_end')).alias('amino_acid_change'))
... .show()
... )
+-----------------+
|amino_acid_change|
+-----------------+
| A1B|
| null|
| null|
+-----------------+
<BLANKLINE>
"""
return f.when(
amino_acids.isNotNull() & protein_end.isNotNull(),
f.concat(
f.split(amino_acids, r"\/")[0],
protein_end,
f.split(amino_acids, r"\/")[1],
),
).otherwise(f.lit(None))
@staticmethod
def _collect_uniprot_accessions(trembl: Column, swissprot: Column) -> Column:
"""Flatten arrays containing Uniprot accessions.
Args:
trembl (Column): List of TrEMBL protein accessions.
swissprot (Column): List of SwissProt protein accessions.
Returns:
Column: List of unique Uniprot accessions extracted from swissprot and trembl arrays, splitted from version numbers.
Examples:
>>> data = [('v1', ["sp_1"], ["tr_1"]), ('v1', None, None), ('v1', None, ["tr_2"]),]
>>> (
... spark.createDataFrame(data, ['v', 'sp', 'tr'])
... .select(VariantEffectPredictorParser._collect_uniprot_accessions(f.col('sp'), f.col('tr')).alias('proteinIds'))
... .show()
... )
+------------+
| proteinIds|
+------------+
|[sp_1, tr_1]|
| []|
| [tr_2]|
+------------+
<BLANKLINE>
"""
# Dropping Null values and flattening the arrays:
return f.filter(
f.array_distinct(
f.transform(
f.flatten(
f.filter(
f.array(trembl, swissprot),
lambda x: x.isNotNull(),
)
),
lambda x: f.split(x, r"\.")[0],
)
),
lambda x: x.isNotNull(),
)
@staticmethod
def _parse_variant_location_id(vep_input_field: Column) -> list[Column]:
r"""Parse variant identifier, chromosome, position, reference allele and alternate allele from VEP input field.
Args:
vep_input_field (Column): Column containing variant vcf string used as VEP input.
Returns:
list[Column]: List of columns containing chromosome, position, reference allele and alternate allele.
"""
variant_fields = f.split(vep_input_field, r"\t")
return [
f.concat_ws(
"_",
f.array(
variant_fields[0],
variant_fields[1],
variant_fields[3],
variant_fields[4],
),
).alias("variantId"),
variant_fields[0].cast(t.StringType()).alias("chromosome"),
variant_fields[1].cast(t.IntegerType()).alias("position"),
variant_fields[3].cast(t.StringType()).alias("referenceAllele"),
variant_fields[4].cast(t.StringType()).alias("alternateAllele"),
]
@classmethod
def process_vep_output(
cls, vep_output: DataFrame, hash_threshold: int = 100
) -> DataFrame:
"""Process and format a VEP output in JSON format.
Args:
vep_output (DataFrame): raw VEP output, read as spark DataFrame.
hash_threshold (int): threshold above which variant identifiers will be hashed.
Returns:
DataFrame: processed data in the right shape.
"""
# Processing VEP output:
return (
vep_output
# Dropping non-canonical transcript consequences: # TODO: parametrize this.
.withColumn(
"transcript_consequences",
f.filter(
f.col("transcript_consequences"),
lambda consequence: consequence.getItem("canonical") == 1,
),
)
.select(
# Parse id and chr:pos:alt:ref:
*cls._parse_variant_location_id(f.col("input")),
# Extracting corss_references from colocated variants:
cls._extract_ensembl_xrefs(f.col("colocated_variants")).alias(
"ensembl_xrefs"
),
cls._extract_omim_xrefs(f.col("colocated_variants")).alias(
"omim_xrefs"
),
cls._extract_clinvar_xrefs(f.col("colocated_variants")).alias(
"clinvar_xrefs"
),
# Extracting in silico predictors
f.when(
# The following in-silico predictors are only available for variants with transcript consequences:
f.col("transcript_consequences").isNotNull(),
f.filter(
f.array(
# Extract CADD scores:
cls._vep_in_silico_prediction_extractor(
transcript_column_name="transcript_consequences",
method_name="CADD",
score_column_name="cadd_phred",
),
# Extract polyphen scores:
cls._vep_in_silico_prediction_extractor(
transcript_column_name="transcript_consequences",
method_name="PolyPhen",
score_column_name="polyphen_score",
assessment_column_name="polyphen_prediction",
),
# Extract sift scores:
cls._vep_in_silico_prediction_extractor(
transcript_column_name="transcript_consequences",
method_name="SIFT",
score_column_name="sift_score",
assessment_column_name="sift_prediction",
),
# Extract loftee scores:
cls._vep_in_silico_prediction_extractor(
method_name="LOFTEE",
transcript_column_name="transcript_consequences",
score_column_name="lof",
assessment_column_name="lof",
assessment_flag_column_name="lof_filter",
),
# Extract GERP conservation score:
cls._vep_in_silico_prediction_extractor(
method_name="GERP",
transcript_column_name="transcript_consequences",
score_column_name="conservation",
),
# Extract max alpha missense:
cls._get_max_alpha_missense(
f.col("transcript_consequences")
),
# Extract VEP prediction:
cls._get_vep_prediction(f.col("most_severe_consequence")),
),
lambda predictor: predictor.isNotNull(),
),
)
.otherwise(
# Extract CADD scores from intergenic object:
f.array(
cls._vep_in_silico_prediction_extractor(
transcript_column_name="intergenic_consequences",
method_name="CADD",
score_column_name="cadd_phred",
),
# Extract GERP conservation score:
cls._vep_in_silico_prediction_extractor(
method_name="GERP",
transcript_column_name="intergenic_consequences",
score_column_name="conservation",
),
# Extract VEP prediction:
cls._get_vep_prediction(f.col("most_severe_consequence")),
)
)
.alias("inSilicoPredictors"),
# Convert consequence to SO:
map_column_by_dictionary(
f.col("most_severe_consequence"), cls.SEQUENCE_ONTOLOGY_MAP
).alias("mostSevereConsequenceId"),
# Propagate most severe consequence:
"most_severe_consequence",
# Extract HGVS identifier:
f.when(
f.size("transcript_consequences") > 0,
f.col("transcript_consequences").getItem(0).getItem("hgvsg"),
)
.when(
f.size("intergenic_consequences") > 0,
f.col("intergenic_consequences").getItem(0).getItem("hgvsg"),
)
.otherwise(f.lit(None))
.alias("hgvsId"),
# Collect transcript consequence:
f.when(
f.col("transcript_consequences").isNotNull(),
f.transform(
f.col("transcript_consequences"),
lambda transcript: f.struct(
# Convert consequence terms to SO identifier:
f.transform(
transcript.consequence_terms,
lambda y: map_column_by_dictionary(
y, cls.SEQUENCE_ONTOLOGY_MAP
),
).alias("variantFunctionalConsequenceIds"),
# Convert consequence terms to consequence score:
f.array_max(
f.transform(
transcript.consequence_terms,
lambda term: map_column_by_dictionary(
term, cls.LABEL_TO_SCORE_MAP
),
)
)
.cast(t.FloatType())
.alias("consequenceScore"),
# Format amino acid change:
cls._parser_amino_acid_change(
transcript.amino_acids, transcript.protein_end
).alias("aminoAcidChange"),
# Extract and clean uniprot identifiers:
cls._collect_uniprot_accessions(
transcript.swissprot,
transcript.trembl,
).alias("uniprotAccessions"),
# Add canonical flag:
f.when(transcript.canonical == 1, f.lit(True))
.otherwise(f.lit(False))
.alias("isEnsemblCanonical"),
# Extract footprint distance:
transcript.codons.alias("codons"),
f.when(transcript.distance.isNotNull(), transcript.distance)
.otherwise(f.lit(0))
.cast(t.LongType())
.alias("distanceFromFootprint"),
# Extract distance from the transcription start site:
transcript.tssdistance.cast(t.LongType()).alias(
"distanceFromTss"
),
# Extracting APPRIS isoform annotation for this transcript:
transcript.appris.alias("appris"),
# Extracting MANE select transcript:
transcript.mane_select.alias("maneSelect"),
transcript.gene_id.alias("targetId"),
transcript.impact.alias("impact"),
transcript.lof.cast(t.StringType()).alias(
"lofteePrediction"
),
transcript.lof.cast(t.FloatType()).alias("siftPrediction"),
transcript.lof.cast(t.FloatType()).alias(
"polyphenPrediction"
),
transcript.transcript_id.alias("transcriptId"),
transcript.biotype.alias("biotype"),
transcript.gene_symbol.alias("approvedSymbol"),
),
),
).alias("transcriptConsequences"),
# Extracting rsids:
cls._colocated_variants_to_rsids(f.col("colocated_variants")).alias(
"rsIds"
),
# Adding empty array for allele frequencies - now this piece of data is not coming form the VEP data:
f.array().cast(cls.ALLELE_FREQUENCY_SCHEMA).alias("alleleFrequencies"),
)
# Dropping transcripts where the consequence score or the distance is null:
.withColumn(
"transcriptConsequences",
f.filter(
f.col("transcriptConsequences"),
lambda x: x.getItem("consequenceScore").isNotNull()
& x.getItem("distanceFromFootprint").isNotNull(),
),
)
# Sort transcript consequences by consequence score and distance from footprint and add index:
.withColumn(
"transcriptConsequences",
f.when(
f.col("transcriptConsequences").isNotNull(),
f.transform(
order_array_of_structs_by_two_fields(
"transcriptConsequences",
"consequenceScore",
"distanceFromFootprint",
),
lambda x, i: x.withField("transcriptIndex", i + f.lit(1)),
),
),
)
# Adding protvar xref for missense variants: # TODO: making and extendable list of consequences
.withColumn(
"protvar_xrefs",
f.when(
f.size(
f.filter(
f.col("transcriptConsequences"),
lambda x: f.array_contains(
x.variantFunctionalConsequenceIds, "SO_0001583"
),
)
)
> 0,
cls._generate_dbxrefs(f.array(f.col("variantId")), "protvar"),
),
)
.withColumn(
"dbXrefs",
f.flatten(
f.filter(
f.array(
f.col("ensembl_xrefs"),
f.col("omim_xrefs"),
f.col("clinvar_xrefs"),
f.col("protvar_xrefs"),
),
lambda x: x.isNotNull(),
)
),
)
# If the variantId is too long, hash it:
.withColumn(
"variantId",
VariantIndex.hash_long_variant_ids(
f.col("variantId"),
f.col("chromosome"),
f.col("position"),
hash_threshold,
),
)
# Generating a temporary column with only protein coding transcripts:
.withColumn(
"proteinCodingTranscripts",
f.filter(
f.col("transcriptConsequences"),
lambda x: x.getItem("biotype") == "protein_coding",
),
)
# Generate variant descrioption:
.withColumn(
"variantDescription",
cls._compose_variant_description(
# Passing the most severe consequence:
f.col("most_severe_consequence"),
# The first transcript:
f.filter(
f.col("transcriptConsequences"),
lambda vep: vep.transcriptIndex == 1,
).getItem(0),
# The first protein coding transcript:
order_array_of_structs_by_field(
"proteinCodingTranscripts", "transcriptIndex"
)[f.size("proteinCodingTranscripts") - 1],
),
)
# Normalising in silico predictor assessments:
.withColumn(
"inSilicoPredictors",
InSilicoPredictorNormaliser.normalise_in_silico_predictors(
f.col("inSilicoPredictors")
),
)
# Dropping intermediate xref columns:
.drop(
*[
"ensembl_xrefs",
"omim_xrefs",
"clinvar_xrefs",
"protvar_xrefs",
"most_severe_consequence",
"proteinCodingTranscripts",
]
)
# Drooping rows with null position:
.filter(f.col("position").isNotNull())
)
@classmethod
def _compose_variant_description(
cls: type[VariantEffectPredictorParser],
most_severe_consequence: Column,
first_transcript: Column,
first_protein_coding: Column,
) -> Column:
"""Compose variant description based on the most severe consequence.
Args:
most_severe_consequence (Column): Most severe consequence
first_transcript (Column): First transcript
first_protein_coding (Column): First protein coding transcript
Returns:
Column: Variant description
"""
return (
# When there's no transcript whatsoever:
f.when(
first_transcript.isNull(),
f.lit("Intergenic variant no gene in window"),
)
# When the biotype of the first gene is protein coding:
.when(
first_transcript.getItem("biotype") == "protein_coding",
cls._process_protein_coding_transcript(
first_transcript, most_severe_consequence
),
)
# When the first gene is not protein coding, we also pass the first protein coding gene:
.otherwise(
cls._process_non_protein_coding_transcript(
most_severe_consequence, first_transcript, first_protein_coding
)
)
)
@staticmethod
def _process_consequence_term(consequence_term: Column) -> Column:
"""Cleaning up consequence term: capitalizing and replacing underscores.
Args:
consequence_term (Column): Consequence term.
Returns:
Column: Cleaned up consequence term.
"""
last = f.when(consequence_term.contains("variant"), f.lit("")).otherwise(
" variant"
)
return f.concat(f.regexp_replace(f.initcap(consequence_term), "_", " "), last)
@staticmethod
def _process_overlap(transcript: Column) -> Column:
"""Process overlap with gene: if the variant overlaps with the gene, return the gene name or distance.
Args:
transcript (Column): Transcript.
Returns:
Column: string column with overlap description.
"""
gene_label = f.when(
transcript.getField("approvedSymbol").isNotNull(),
transcript.getField("approvedSymbol"),
).otherwise(transcript.getField("targetId"))
return f.when(
transcript.getField("distanceFromFootprint") == 0,
# "overlapping with CCDC8"
f.concat(f.lit(" overlapping with "), gene_label),
).otherwise(
# " 123 basepair away from CCDC8"
f.concat(
f.lit(" "),
f.format_number(transcript.getField("distanceFromFootprint"), 0),
f.lit(" basepair away from "),
gene_label,
)
)
@staticmethod
def _process_aa_change(transcript: Column) -> Column:
"""Extract amino acid change information from transcript when available.
Args:
transcript (Column): Transcript.
Returns:
Column: Amino acid change information.
"""
return f.when(
transcript.getField("aminoAcidChange").isNotNull(),
f.concat(
f.lit(", causing amio-acid change: "),
transcript.getField("aminoAcidChange"),
f.lit(" with "),
f.lower(transcript.getField("impact")),
f.lit(" impact."),
),
).otherwise(f.lit("."))
@staticmethod
def _process_lof(transcript: Column) -> Column:
"""Process loss of function annotation from LOFTEE prediction.
Args:
transcript (Column): Transcript.
Returns:
Column: Loss of function annotation.
"""
return f.when(
transcript.getField("lofteePrediction").isNotNull()
& (transcript.getField("lofteePrediction") == "HC"),
f.lit(" A high-confidence loss-of-function variant by loftee."),
).otherwise(f.lit(""))
@classmethod
def _process_protein_coding_transcript(
cls: type[VariantEffectPredictorParser],
transcript: Column,
most_severe_consequence: Column,
) -> Column:
"""Extract information from the first, protein coding transcript.
Args:
transcript (Column): Transcript.
most_severe_consequence (Column): Most severe consequence.
Returns:
Column: Variant description.
"""
# Process consequence term:
consequence_text = cls._process_consequence_term(most_severe_consequence)
# Does it overlap with the gene:
overlap = cls._process_overlap(transcript)
# Does it cause amino acid change:
amino_acid_change = cls._process_aa_change(transcript)
# Processing lof annotation:
lof_assessment = cls._process_lof(transcript)
# Concat all together:
return f.concat(consequence_text, overlap, amino_acid_change, lof_assessment)
@staticmethod
def _adding_biotype(transcript: Column) -> Column:
"""Adding biotype information to the variant description.
Args:
transcript (Column): Transcript.
Returns:
Column: Biotype information.
"""
biotype = f.when(
transcript.getField("biotype").contains("gene"),
f.regexp_replace(transcript.getField("biotype"), "_", " "),
).otherwise(
f.concat(
f.regexp_replace(transcript.getField("biotype"), "_", " "),
f.lit(" gene."),
)
)
return f.concat(f.lit(", a "), biotype)
@staticmethod
def _parse_protein_coding_transcript(transcript: Column) -> Column:
"""Parse the closest, not first protein coding transcript: extract gene symbol and distance.
Args:
transcript (Column): Transcript.
Returns:
Column: Protein coding transcript information.
"""
gene_label = f.when(
transcript.getField("approvedSymbol").isNotNull(),
transcript.getField("approvedSymbol"),
).otherwise(transcript.getField("targetId"))
return f.when(
transcript.isNotNull(),
f.concat(
f.lit(" The closest protein-coding gene is "),
gene_label,
f.lit(" ("),
f.format_number(transcript.getField("distanceFromFootprint"), 0),
f.lit(" basepair away)."),
),
).otherwise(f.lit(""))
@classmethod
def _process_non_protein_coding_transcript(
cls: type[VariantEffectPredictorParser],
most_severe_consequence: Column,
first_transcript: Column,
first_protein_coding: Column,
) -> Column:
"""Extract information from the first, non-protein coding transcript.
Args:
most_severe_consequence (Column): Most severe consequence.
first_transcript (Column): First transcript.
first_protein_coding (Column): First protein coding transcript.
Returns:
Column: Variant description.
"""
# Process consequence term:
consequence_text = cls._process_consequence_term(most_severe_consequence)
# Does it overlap with the gene:
overlap = cls._process_overlap(first_transcript)
# Adding biotype:
biotype = cls._adding_biotype(first_transcript)
# Adding protein coding gene:
protein_transcript = cls._parse_protein_coding_transcript(first_protein_coding)
# Concat all together:
return f.concat(consequence_text, overlap, biotype, protein_transcript)
|