Skip to content

Fine mapping results

gentropy.datasource.eqtl_catalogue.finemapping.EqtlCatalogueFinemapping dataclass

SuSIE finemapping dataset for eQTL Catalogue.

Credible sets from SuSIE are extracted and transformed into StudyLocus objects: - A study ID is defined as a triad between: the publication, the tissue, and the measured trait (e.g. Braineac2_substantia_nigra_ENSG00000248275) - Each row in the credible_sets.tsv.gz files is represented by molecular_trait_id/variant/rsid trios relevant for a given tissue. Each have their own finemapping statistics - log Bayes Factors are available for all variants in the lbf_variable.txt files

Source code in src/gentropy/datasource/eqtl_catalogue/finemapping.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
@dataclass
class EqtlCatalogueFinemapping:
    """SuSIE finemapping dataset for eQTL Catalogue.

    Credible sets from SuSIE are extracted and transformed into StudyLocus objects:
    - A study ID is defined as a triad between: the publication, the tissue, and the measured trait (e.g. Braineac2_substantia_nigra_ENSG00000248275)
    - Each row in the `credible_sets.tsv.gz` files is represented by molecular_trait_id/variant/rsid trios relevant for a given tissue. Each have their own finemapping statistics
    - log Bayes Factors are available for all variants in the `lbf_variable.txt` files
    """

    raw_credible_set_schema: StructType = StructType(
        [
            StructField("molecular_trait_id", StringType(), True),
            StructField("gene_id", StringType(), True),
            StructField("cs_id", StringType(), True),
            StructField("variant", StringType(), True),
            StructField("rsid", StringType(), True),
            StructField("cs_size", IntegerType(), True),
            StructField("pip", DoubleType(), True),
            StructField("pvalue", DoubleType(), True),
            StructField("beta", DoubleType(), True),
            StructField("se", DoubleType(), True),
            StructField("z", DoubleType(), True),
            StructField("cs_min_r2", DoubleType(), True),
            StructField("region", StringType(), True),
        ]
    )
    raw_lbf_schema: StructType = StructType(
        [
            StructField("molecular_trait_id", StringType(), True),
            StructField("region", StringType(), True),
            StructField("variant", StringType(), True),
            StructField("chromosome", StringType(), True),
            StructField("position", IntegerType(), True),
            StructField("lbf_variable1", DoubleType(), True),
            StructField("lbf_variable2", DoubleType(), True),
            StructField("lbf_variable3", DoubleType(), True),
            StructField("lbf_variable4", DoubleType(), True),
            StructField("lbf_variable5", DoubleType(), True),
            StructField("lbf_variable6", DoubleType(), True),
            StructField("lbf_variable7", DoubleType(), True),
            StructField("lbf_variable8", DoubleType(), True),
            StructField("lbf_variable9", DoubleType(), True),
            StructField("lbf_variable10", DoubleType(), True),
        ]
    )

    @classmethod
    def _extract_credible_set_index(
        cls: type[EqtlCatalogueFinemapping], cs_id: Column
    ) -> Column:
        """Extract the credible set index from the cs_id.

        Args:
            cs_id (Column): column with the credible set id as defined in the eQTL Catalogue.

        Returns:
            Column: The credible set index.

        Examples:
            >>> spark.createDataFrame([("QTD000046_L1",)], ["cs_id"]).select(EqtlCatalogueFinemapping._extract_credible_set_index(f.col("cs_id"))).show()
            +----------------+
            |credibleSetIndex|
            +----------------+
            |               1|
            +----------------+
            <BLANKLINE>
        """
        return f.split(cs_id, "_L")[1].cast(IntegerType()).alias("credibleSetIndex")

    @classmethod
    def _extract_dataset_id_from_file_path(
        cls: type[EqtlCatalogueFinemapping], file_path: Column
    ) -> Column:
        """Extract the dataset_id from the file_path. The dataset_id follows the pattern QTD{6}.

        Args:
            file_path (Column): A column containing the file path.

        Returns:
            Column: The dataset_id.

        Examples:
            >>> spark.createDataFrame([("QTD000046.credible_sets.tsv",)], ["filename"]).select(EqtlCatalogueFinemapping._extract_dataset_id_from_file_path(f.col("filename"))).show()
            +----------+
            |dataset_id|
            +----------+
            | QTD000046|
            +----------+
            <BLANKLINE>
        """
        return f.regexp_extract(file_path, r"QTD\d{6}", 0).alias("dataset_id")

    @classmethod
    def parse_susie_results(
        cls: type[EqtlCatalogueFinemapping],
        credible_sets: DataFrame,
        lbf: DataFrame,
        studies_metadata: DataFrame,
    ) -> DataFrame:
        """Parse the SuSIE results into a DataFrame containing the finemapping statistics and metadata about the studies.

        Args:
            credible_sets (DataFrame): DataFrame containing raw statistics of all variants in the credible sets.
            lbf (DataFrame): DataFrame containing the raw log Bayes Factors for all variants.
            studies_metadata (DataFrame): DataFrame containing the study metadata.

        Returns:
            DataFrame: Processed SuSIE results to contain metadata about the studies and the finemapping statistics.
        """
        ss_ftp_path_template = "https://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats"
        return (
            lbf.join(
                credible_sets.join(f.broadcast(studies_metadata), on="dataset_id"),
                on=["molecular_trait_id", "region", "variant", "dataset_id"],
                how="inner",
            )
            .withColumn(
                "logBF",
                f.when(f.col("credibleSetIndex") == 1, f.col("lbf_variable1"))
                .when(f.col("credibleSetIndex") == 2, f.col("lbf_variable2"))
                .when(f.col("credibleSetIndex") == 3, f.col("lbf_variable3"))
                .when(f.col("credibleSetIndex") == 4, f.col("lbf_variable4"))
                .when(f.col("credibleSetIndex") == 5, f.col("lbf_variable5"))
                .when(f.col("credibleSetIndex") == 6, f.col("lbf_variable6"))
                .when(f.col("credibleSetIndex") == 7, f.col("lbf_variable7"))
                .when(f.col("credibleSetIndex") == 8, f.col("lbf_variable8"))
                .when(f.col("credibleSetIndex") == 9, f.col("lbf_variable9"))
                .when(f.col("credibleSetIndex") == 10, f.col("lbf_variable10")),
            )
            .select(
                f.regexp_replace(f.col("variant"), r"chr", "").alias("variantId"),
                f.col("region"),
                f.col("chromosome"),
                f.col("position"),
                f.col("pip").alias("posteriorProbability"),
                *parse_pvalue(f.col("pvalue")),
                f.col("sample_size").alias("nSamples"),
                f.col("beta"),
                f.col("se").alias("standardError"),
                f.col("credibleSetIndex"),
                f.col("logBF"),
                f.lit(FinemappingMethod.SUSIE.value).alias("finemappingMethod"),
                # Study metadata
                f.col("molecular_trait_id").alias("traitFromSource"),
                f.col("gene_id").alias("geneId"),
                f.col("dataset_id"),
                f.concat_ws(
                    "_",
                    f.col("study_label"),
                    f.col("quant_method"),
                    f.col("sample_group"),
                    f.col("molecular_trait_id"),
                ).alias("studyId"),
                f.col("tissue_id").alias("biosampleFromSourceId"),
                EqtlCatalogueStudyIndex._identify_study_type().alias("studyType"),
                f.col("study_label").alias("projectId"),
                f.concat_ws(
                    "/",
                    f.lit(ss_ftp_path_template),
                    f.col("study_id"),
                    f.col("dataset_id"),
                ).alias("summarystatsLocation"),
                f.lit(True).alias("hasSumstats"),
                f.col("molecular_trait_id"),
                f.col("pmid").alias("pubmedId"),
                f.col("condition_label").alias("condition"),
            )
        )

    @classmethod
    def from_susie_results(
        cls: type[EqtlCatalogueFinemapping], processed_finemapping_df: DataFrame
    ) -> StudyLocus:
        """Create a StudyLocus object from the processed SuSIE results.

        Args:
            processed_finemapping_df (DataFrame): DataFrame containing the processed SuSIE results.

        Returns:
            StudyLocus: eQTL Catalogue credible sets.
        """
        lead_w = Window.partitionBy(
            "dataset_id", "molecular_trait_id", "region", "credibleSetIndex"
        )
        study_locus_cols = [
            field.name
            for field in StudyLocus.get_schema().fields
            if field.name in processed_finemapping_df.columns
        ] + ["locus"]
        return StudyLocus(
            _df=(
                processed_finemapping_df.withColumn(
                    "isLead",
                    f.row_number().over(lead_w.orderBy(f.desc("posteriorProbability")))
                    == f.lit(1),
                )
                .withColumn(
                    # Collecting all variants that constitute the credible set brings as many variants as the credible set size
                    "locus",
                    f.when(
                        f.col("isLead"),
                        f.collect_list(
                            f.struct(
                                "variantId",
                                "posteriorProbability",
                                "pValueMantissa",
                                "pValueExponent",
                                "logBF",
                                "beta",
                                "standardError",
                            )
                        ).over(lead_w),
                    ),
                )
                .filter(f.col("isLead"))
                .drop("isLead")
                .select(
                    *study_locus_cols,
                    StudyLocus.assign_study_locus_id(
                        ["studyId", "variantId", "finemappingMethod"]
                    ),
                    StudyLocus.calculate_credible_set_log10bf(
                        f.col("locus.logBF")
                    ).alias("credibleSetlog10BF"),
                )
            ),
            _schema=StudyLocus.get_schema(),
        ).annotate_credible_sets()

    @classmethod
    def read_credible_set_from_source(
        cls: type[EqtlCatalogueFinemapping],
        session: Session,
        credible_set_path: str | list[str],
    ) -> DataFrame:
        """Load raw credible sets from eQTL Catalogue.

        Args:
            session (Session): Spark session.
            credible_set_path (str | list[str]): Path to raw table(s) containing finemapping results for any variant belonging to a credible set.

        Returns:
            DataFrame: Credible sets DataFrame.
        """
        return (
            session.spark.read.csv(
                credible_set_path,
                sep="\t",
                header=True,
                schema=cls.raw_credible_set_schema,
            )
            .withColumns(
                {
                    # Adding dataset id based on the input file name:
                    "dataset_id": cls._extract_dataset_id_from_file_path(
                        f.input_file_name()
                    ),
                    # Parsing credible set index from the cs_id:
                    "credibleSetIndex": cls._extract_credible_set_index(f.col("cs_id")),
                }
            )
            # Remove duplicates caused by explosion of single variants to multiple rsid-s:
            .drop("rsid")
            .distinct()
        )

    @classmethod
    def read_lbf_from_source(
        cls: type[EqtlCatalogueFinemapping],
        session: Session,
        lbf_path: str | list[str],
    ) -> DataFrame:
        """Load raw log Bayes Factors from eQTL Catalogue.

        Args:
            session (Session): Spark session.
            lbf_path (str | list[str]): Path to raw table(s) containing Log Bayes Factors for each variant.

        Returns:
            DataFrame: Log Bayes Factors DataFrame.
        """
        return (
            session.spark.read.csv(
                lbf_path,
                sep="\t",
                header=True,
                schema=cls.raw_lbf_schema,
            )
            .withColumn(
                "dataset_id",
                cls._extract_dataset_id_from_file_path(f.input_file_name()),
            )
            .distinct()
        )

from_susie_results(processed_finemapping_df: DataFrame) -> StudyLocus classmethod

Create a StudyLocus object from the processed SuSIE results.

Parameters:

Name Type Description Default
processed_finemapping_df DataFrame

DataFrame containing the processed SuSIE results.

required

Returns:

Name Type Description
StudyLocus StudyLocus

eQTL Catalogue credible sets.

Source code in src/gentropy/datasource/eqtl_catalogue/finemapping.py
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
@classmethod
def from_susie_results(
    cls: type[EqtlCatalogueFinemapping], processed_finemapping_df: DataFrame
) -> StudyLocus:
    """Create a StudyLocus object from the processed SuSIE results.

    Args:
        processed_finemapping_df (DataFrame): DataFrame containing the processed SuSIE results.

    Returns:
        StudyLocus: eQTL Catalogue credible sets.
    """
    lead_w = Window.partitionBy(
        "dataset_id", "molecular_trait_id", "region", "credibleSetIndex"
    )
    study_locus_cols = [
        field.name
        for field in StudyLocus.get_schema().fields
        if field.name in processed_finemapping_df.columns
    ] + ["locus"]
    return StudyLocus(
        _df=(
            processed_finemapping_df.withColumn(
                "isLead",
                f.row_number().over(lead_w.orderBy(f.desc("posteriorProbability")))
                == f.lit(1),
            )
            .withColumn(
                # Collecting all variants that constitute the credible set brings as many variants as the credible set size
                "locus",
                f.when(
                    f.col("isLead"),
                    f.collect_list(
                        f.struct(
                            "variantId",
                            "posteriorProbability",
                            "pValueMantissa",
                            "pValueExponent",
                            "logBF",
                            "beta",
                            "standardError",
                        )
                    ).over(lead_w),
                ),
            )
            .filter(f.col("isLead"))
            .drop("isLead")
            .select(
                *study_locus_cols,
                StudyLocus.assign_study_locus_id(
                    ["studyId", "variantId", "finemappingMethod"]
                ),
                StudyLocus.calculate_credible_set_log10bf(
                    f.col("locus.logBF")
                ).alias("credibleSetlog10BF"),
            )
        ),
        _schema=StudyLocus.get_schema(),
    ).annotate_credible_sets()

parse_susie_results(credible_sets: DataFrame, lbf: DataFrame, studies_metadata: DataFrame) -> DataFrame classmethod

Parse the SuSIE results into a DataFrame containing the finemapping statistics and metadata about the studies.

Parameters:

Name Type Description Default
credible_sets DataFrame

DataFrame containing raw statistics of all variants in the credible sets.

required
lbf DataFrame

DataFrame containing the raw log Bayes Factors for all variants.

required
studies_metadata DataFrame

DataFrame containing the study metadata.

required

Returns:

Name Type Description
DataFrame DataFrame

Processed SuSIE results to contain metadata about the studies and the finemapping statistics.

Source code in src/gentropy/datasource/eqtl_catalogue/finemapping.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
@classmethod
def parse_susie_results(
    cls: type[EqtlCatalogueFinemapping],
    credible_sets: DataFrame,
    lbf: DataFrame,
    studies_metadata: DataFrame,
) -> DataFrame:
    """Parse the SuSIE results into a DataFrame containing the finemapping statistics and metadata about the studies.

    Args:
        credible_sets (DataFrame): DataFrame containing raw statistics of all variants in the credible sets.
        lbf (DataFrame): DataFrame containing the raw log Bayes Factors for all variants.
        studies_metadata (DataFrame): DataFrame containing the study metadata.

    Returns:
        DataFrame: Processed SuSIE results to contain metadata about the studies and the finemapping statistics.
    """
    ss_ftp_path_template = "https://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats"
    return (
        lbf.join(
            credible_sets.join(f.broadcast(studies_metadata), on="dataset_id"),
            on=["molecular_trait_id", "region", "variant", "dataset_id"],
            how="inner",
        )
        .withColumn(
            "logBF",
            f.when(f.col("credibleSetIndex") == 1, f.col("lbf_variable1"))
            .when(f.col("credibleSetIndex") == 2, f.col("lbf_variable2"))
            .when(f.col("credibleSetIndex") == 3, f.col("lbf_variable3"))
            .when(f.col("credibleSetIndex") == 4, f.col("lbf_variable4"))
            .when(f.col("credibleSetIndex") == 5, f.col("lbf_variable5"))
            .when(f.col("credibleSetIndex") == 6, f.col("lbf_variable6"))
            .when(f.col("credibleSetIndex") == 7, f.col("lbf_variable7"))
            .when(f.col("credibleSetIndex") == 8, f.col("lbf_variable8"))
            .when(f.col("credibleSetIndex") == 9, f.col("lbf_variable9"))
            .when(f.col("credibleSetIndex") == 10, f.col("lbf_variable10")),
        )
        .select(
            f.regexp_replace(f.col("variant"), r"chr", "").alias("variantId"),
            f.col("region"),
            f.col("chromosome"),
            f.col("position"),
            f.col("pip").alias("posteriorProbability"),
            *parse_pvalue(f.col("pvalue")),
            f.col("sample_size").alias("nSamples"),
            f.col("beta"),
            f.col("se").alias("standardError"),
            f.col("credibleSetIndex"),
            f.col("logBF"),
            f.lit(FinemappingMethod.SUSIE.value).alias("finemappingMethod"),
            # Study metadata
            f.col("molecular_trait_id").alias("traitFromSource"),
            f.col("gene_id").alias("geneId"),
            f.col("dataset_id"),
            f.concat_ws(
                "_",
                f.col("study_label"),
                f.col("quant_method"),
                f.col("sample_group"),
                f.col("molecular_trait_id"),
            ).alias("studyId"),
            f.col("tissue_id").alias("biosampleFromSourceId"),
            EqtlCatalogueStudyIndex._identify_study_type().alias("studyType"),
            f.col("study_label").alias("projectId"),
            f.concat_ws(
                "/",
                f.lit(ss_ftp_path_template),
                f.col("study_id"),
                f.col("dataset_id"),
            ).alias("summarystatsLocation"),
            f.lit(True).alias("hasSumstats"),
            f.col("molecular_trait_id"),
            f.col("pmid").alias("pubmedId"),
            f.col("condition_label").alias("condition"),
        )
    )

read_credible_set_from_source(session: Session, credible_set_path: str | list[str]) -> DataFrame classmethod

Load raw credible sets from eQTL Catalogue.

Parameters:

Name Type Description Default
session Session

Spark session.

required
credible_set_path str | list[str]

Path to raw table(s) containing finemapping results for any variant belonging to a credible set.

required

Returns:

Name Type Description
DataFrame DataFrame

Credible sets DataFrame.

Source code in src/gentropy/datasource/eqtl_catalogue/finemapping.py
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
@classmethod
def read_credible_set_from_source(
    cls: type[EqtlCatalogueFinemapping],
    session: Session,
    credible_set_path: str | list[str],
) -> DataFrame:
    """Load raw credible sets from eQTL Catalogue.

    Args:
        session (Session): Spark session.
        credible_set_path (str | list[str]): Path to raw table(s) containing finemapping results for any variant belonging to a credible set.

    Returns:
        DataFrame: Credible sets DataFrame.
    """
    return (
        session.spark.read.csv(
            credible_set_path,
            sep="\t",
            header=True,
            schema=cls.raw_credible_set_schema,
        )
        .withColumns(
            {
                # Adding dataset id based on the input file name:
                "dataset_id": cls._extract_dataset_id_from_file_path(
                    f.input_file_name()
                ),
                # Parsing credible set index from the cs_id:
                "credibleSetIndex": cls._extract_credible_set_index(f.col("cs_id")),
            }
        )
        # Remove duplicates caused by explosion of single variants to multiple rsid-s:
        .drop("rsid")
        .distinct()
    )

read_lbf_from_source(session: Session, lbf_path: str | list[str]) -> DataFrame classmethod

Load raw log Bayes Factors from eQTL Catalogue.

Parameters:

Name Type Description Default
session Session

Spark session.

required
lbf_path str | list[str]

Path to raw table(s) containing Log Bayes Factors for each variant.

required

Returns:

Name Type Description
DataFrame DataFrame

Log Bayes Factors DataFrame.

Source code in src/gentropy/datasource/eqtl_catalogue/finemapping.py
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
@classmethod
def read_lbf_from_source(
    cls: type[EqtlCatalogueFinemapping],
    session: Session,
    lbf_path: str | list[str],
) -> DataFrame:
    """Load raw log Bayes Factors from eQTL Catalogue.

    Args:
        session (Session): Spark session.
        lbf_path (str | list[str]): Path to raw table(s) containing Log Bayes Factors for each variant.

    Returns:
        DataFrame: Log Bayes Factors DataFrame.
    """
    return (
        session.spark.read.csv(
            lbf_path,
            sep="\t",
            header=True,
            schema=cls.raw_lbf_schema,
        )
        .withColumn(
            "dataset_id",
            cls._extract_dataset_id_from_file_path(f.input_file_name()),
        )
        .distinct()
    )