30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169 | @dataclass
class GWASCatalogCuratedAssociationsParser:
"""GWAS Catalog curated associations parser."""
@staticmethod
def convert_gnomad_position_to_ensembl(
position: Column, reference: Column, alternate: Column
) -> Column:
"""Convert GnomAD variant position to Ensembl variant position.
For indels (the reference or alternate allele is longer than 1), then adding 1 to the position, for SNPs,
the position is unchanged. More info about the problem: https://www.biostars.org/p/84686/
Args:
position (Column): Position of the variant in GnomAD's coordinates system.
reference (Column): The reference allele in GnomAD's coordinates system.
alternate (Column): The alternate allele in GnomAD's coordinates system.
Returns:
Column: The position of the variant in the Ensembl genome.
Examples:
>>> d = [(1, "A", "C"), (2, "AA", "C"), (3, "A", "AA")]
>>> df = spark.createDataFrame(d).toDF("position", "reference", "alternate")
>>> df.withColumn("new_position", GWASCatalogCuratedAssociationsParser.convert_gnomad_position_to_ensembl(f.col("position"), f.col("reference"), f.col("alternate"))).show()
+--------+---------+---------+------------+
|position|reference|alternate|new_position|
+--------+---------+---------+------------+
| 1| A| C| 1|
| 2| AA| C| 3|
| 3| A| AA| 4|
+--------+---------+---------+------------+
<BLANKLINE>
"""
return f.when(
(f.length(reference) > 1) | (f.length(alternate) > 1), position + 1
).otherwise(position)
@staticmethod
def _parse_pvalue(pvalue: Column) -> tuple[Column, Column]:
"""Parse p-value column.
Args:
pvalue (Column): p-value [string]
Returns:
tuple[Column, Column]: p-value mantissa and exponent
Example:
>>> import pyspark.sql.types as t
>>> d = [("1.0"), ("0.5"), ("1E-20"), ("3E-3"), ("1E-1000")]
>>> df = spark.createDataFrame(d, t.StringType())
>>> df.select('value',*GWASCatalogCuratedAssociationsParser._parse_pvalue(f.col('value'))).show()
+-------+--------------+--------------+
| value|pValueMantissa|pValueExponent|
+-------+--------------+--------------+
| 1.0| 1.0| 1|
| 0.5| 0.5| 1|
| 1E-20| 1.0| -20|
| 3E-3| 3.0| -3|
|1E-1000| 1.0| -1000|
+-------+--------------+--------------+
<BLANKLINE>
"""
split = f.split(pvalue, "E")
return split.getItem(0).cast("float").alias("pValueMantissa"), f.coalesce(
split.getItem(1).cast("integer"), f.lit(1)
).alias("pValueExponent")
@staticmethod
def _normalise_pvaluetext(p_value_text: Column) -> Column:
"""Normalised p-value text column to a standardised format.
For cases where there is no mapping, the value is set to null.
Args:
p_value_text (Column): `pValueText` column from GWASCatalog
Returns:
Column: Array column after using GWAS Catalog mappings. There might be multiple mappings for a single p-value text.
Example:
>>> import pyspark.sql.types as t
>>> d = [("European Ancestry"), ("African ancestry"), ("Alzheimer’s Disease"), ("(progression)"), (""), (None)]
>>> df = spark.createDataFrame(d, t.StringType())
>>> df.withColumn('normalised', GWASCatalogCuratedAssociationsParser._normalise_pvaluetext(f.col('value'))).show()
+-------------------+----------+
| value|normalised|
+-------------------+----------+
| European Ancestry| [EA]|
| African ancestry| [AA]|
|Alzheimer’s Disease| [AD]|
| (progression)| null|
| | null|
| null| null|
+-------------------+----------+
<BLANKLINE>
"""
# GWAS Catalog to p-value mapping
json_dict = json.loads(
pkg_resources.read_text(data, "gwas_pValueText_map.json", encoding="utf-8")
)
map_expr = f.create_map(*[f.lit(x) for x in chain(*json_dict.items())])
splitted_col = f.split(f.regexp_replace(p_value_text, r"[\(\)]", ""), ",")
mapped_col = f.transform(splitted_col, lambda x: map_expr[x])
return f.when(f.forall(mapped_col, lambda x: x.isNull()), None).otherwise(
mapped_col
)
@staticmethod
def _extract_risk_allele(risk_allele: Column) -> Column:
"""Extract risk allele from provided "STRONGEST SNP-RISK ALLELE" input column.
If multiple risk alleles are present, the first one is returned.
Args:
risk_allele (Column): `riskAllele` column from GWASCatalog
Returns:
Column: mapped using GWAS Catalog mapping
Example:
>>> import pyspark.sql.types as t
>>> d = [("rs1234-A-G"), ("rs1234-A"), ("rs1234-A; rs1235-G")]
>>> df = spark.createDataFrame(d, t.StringType())
>>> df.withColumn('normalised', GWASCatalogCuratedAssociationsParser._extract_risk_allele(f.col('value'))).show()
+------------------+----------+
| value|normalised|
+------------------+----------+
| rs1234-A-G| A|
| rs1234-A| A|
|rs1234-A; rs1235-G| A|
+------------------+----------+
<BLANKLINE>
"""
# GWAS Catalog to risk allele mapping
return f.split(f.split(risk_allele, "; ").getItem(0), "-").getItem(1)
@staticmethod
def _collect_rsids(
snp_id: Column, snp_id_current: Column, risk_allele: Column
) -> Column:
"""It takes three columns, and returns an array of distinct values from those columns.
Args:
snp_id (Column): The original snp id from the GWAS catalog.
snp_id_current (Column): The current snp id field is just a number at the moment (stored as a string). Adding 'rs' prefix if looks good.
risk_allele (Column): The risk allele for the SNP.
Returns:
Column: An array of distinct values.
"""
# The current snp id field is just a number at the moment (stored as a string). Adding 'rs' prefix if looks good.
snp_id_current = f.when(
snp_id_current.rlike("^[0-9]*$"),
f.format_string("rs%s", snp_id_current),
)
# Cleaning risk allele:
risk_allele = f.split(risk_allele, "-").getItem(0)
# Collecting all values:
return f.array_distinct(f.array(snp_id, snp_id_current, risk_allele))
@staticmethod
def _map_variants_to_gnomad_variants(
gwas_associations: DataFrame, variant_index: VariantIndex
) -> DataFrame:
"""Add variant metadata in associations.
Args:
gwas_associations (DataFrame): raw GWAS Catalog associations.
variant_index (VariantIndex): GnomaAD variants dataset with allele frequencies.
Returns:
DataFrame: GWAS Catalog associations data including `variantId`, `referenceAllele`,
`alternateAllele`, `chromosome`, `position` with variant metadata
"""
# Subset of GWAS Catalog associations required for resolving variant IDs:
gwas_associations_subset = gwas_associations.select(
"rowId",
f.col("CHR_ID").alias("chromosome"),
# The positions from GWAS Catalog are from ensembl that causes discrepancy for indels:
f.col("CHR_POS").cast(IntegerType()).alias("ensemblPosition"),
# List of all SNPs associated with the variant
GWASCatalogCuratedAssociationsParser._collect_rsids(
f.split(f.col("SNPS"), "; ").getItem(0),
f.col("SNP_ID_CURRENT"),
f.split(f.col("STRONGEST SNP-RISK ALLELE"), "; ").getItem(0),
).alias("rsIdsGwasCatalog"),
GWASCatalogCuratedAssociationsParser._extract_risk_allele(
f.col("STRONGEST SNP-RISK ALLELE")
).alias("riskAllele"),
)
# Subset of variant annotation required for GWAS Catalog annotations:
va_subset = variant_index.df.select(
"variantId",
"chromosome",
# Calculate the position in Ensembl coordinates for indels:
GWASCatalogCuratedAssociationsParser.convert_gnomad_position_to_ensembl(
f.col("position"),
f.col("referenceAllele"),
f.col("alternateAllele"),
).alias("ensemblPosition"),
# Keeping GnomAD position:
"position",
f.col("rsIds").alias("rsIdsGnomad"),
"referenceAllele",
"alternateAllele",
"alleleFrequencies",
variant_index.max_maf().alias("maxMaf"),
).join(
gwas_associations_subset.select("chromosome", "ensemblPosition").distinct(),
on=["chromosome", "ensemblPosition"],
how="inner",
)
# Semi-resolved ids (still contains duplicates when conclusion was not possible to make
# based on rsIds or allele concordance)
filtered_associations = (
gwas_associations_subset.join(
va_subset,
on=["chromosome", "ensemblPosition"],
how="left",
)
.withColumn(
"rsIdFilter",
GWASCatalogCuratedAssociationsParser._flag_mappings_to_retain(
f.col("rowId"),
GWASCatalogCuratedAssociationsParser._compare_rsids(
f.col("rsIdsGnomad"), f.col("rsIdsGwasCatalog")
),
),
)
.withColumn(
"concordanceFilter",
GWASCatalogCuratedAssociationsParser._flag_mappings_to_retain(
f.col("rowId"),
GWASCatalogCuratedAssociationsParser._check_concordance(
f.col("riskAllele"),
f.col("referenceAllele"),
f.col("alternateAllele"),
),
),
)
.filter(
# Filter out rows where GWAS Catalog rsId does not match with GnomAD rsId,
# but there is corresponding variant for the same association
f.col("rsIdFilter")
# or filter out rows where GWAS Catalog alleles are not concordant with GnomAD alleles,
# but there is corresponding variant for the same association
| f.col("concordanceFilter")
)
)
# Keep only highest maxMaf variant per rowId
fully_mapped_associations = get_record_with_maximum_value(
filtered_associations, grouping_col="rowId", sorting_col="maxMaf"
).select(
"rowId",
"variantId",
"referenceAllele",
"alternateAllele",
"chromosome",
"position",
)
return gwas_associations.join(
fully_mapped_associations, on="rowId", how="left"
)
@staticmethod
def _compare_rsids(gnomad: Column, gwas: Column) -> Column:
"""If the intersection of the two arrays is greater than 0, return True, otherwise return False.
Args:
gnomad (Column): rsids from gnomad
gwas (Column): rsids from the GWAS Catalog
Returns:
Column: A boolean column that is true if the GnomAD rsIDs can be found in the GWAS rsIDs.
Examples:
>>> d = [
... (1, ["rs123", "rs523"], ["rs123"]),
... (2, [], ["rs123"]),
... (3, ["rs123", "rs523"], []),
... (4, [], []),
... ]
>>> df = spark.createDataFrame(d, ['associationId', 'gnomad', 'gwas'])
>>> df.withColumn("rsid_matches", GWASCatalogCuratedAssociationsParser._compare_rsids(f.col("gnomad"),f.col('gwas'))).show()
+-------------+--------------+-------+------------+
|associationId| gnomad| gwas|rsid_matches|
+-------------+--------------+-------+------------+
| 1|[rs123, rs523]|[rs123]| true|
| 2| []|[rs123]| false|
| 3|[rs123, rs523]| []| false|
| 4| []| []| false|
+-------------+--------------+-------+------------+
<BLANKLINE>
"""
return f.when(f.size(f.array_intersect(gnomad, gwas)) > 0, True).otherwise(
False
)
@staticmethod
def _flag_mappings_to_retain(
association_id: Column, filter_column: Column
) -> Column:
"""Flagging mappings to drop for each association.
Some associations have multiple mappings. Some has matching rsId others don't. We only
want to drop the non-matching mappings, when a matching is available for the given association.
This logic can be generalised for other measures eg. allele concordance.
Args:
association_id (Column): association identifier column
filter_column (Column): boolean col indicating to keep a mapping
Returns:
Column: A column with a boolean value.
Examples:
>>> d = [
... (1, False),
... (1, False),
... (2, False),
... (2, True),
... (3, True),
... (3, True),
... ]
>>> df = spark.createDataFrame(d, ['associationId', 'filter'])
>>> df.withColumn("isConcordant", GWASCatalogCuratedAssociationsParser._flag_mappings_to_retain(f.col("associationId"),f.col('filter'))).show()
+-------------+------+------------+
|associationId|filter|isConcordant|
+-------------+------+------------+
| 1| false| true|
| 1| false| true|
| 2| false| false|
| 2| true| true|
| 3| true| true|
| 3| true| true|
+-------------+------+------------+
<BLANKLINE>
"""
w = Window.partitionBy(association_id)
# Generating a boolean column informing if the filter column contains true anywhere for the association:
aggregated_filter = f.when(
f.array_contains(f.collect_set(filter_column).over(w), True), True
).otherwise(False)
# Generate a filter column:
return f.when(aggregated_filter & (~filter_column), False).otherwise(True)
@staticmethod
def _check_concordance(
risk_allele: Column, reference_allele: Column, alternate_allele: Column
) -> Column:
"""A function to check if the risk allele is concordant with the alt or ref allele.
If the risk allele is the same as the reference or alternate allele, or if the reverse complement of
the risk allele is the same as the reference or alternate allele, then the allele is concordant.
If no mapping is available (ref/alt is null), the function returns True.
Args:
risk_allele (Column): The allele that is associated with the risk of the disease.
reference_allele (Column): The reference allele from the GWAS catalog
alternate_allele (Column): The alternate allele of the variant.
Returns:
Column: A boolean column that is True if the risk allele is the same as the reference or alternate allele,
or if the reverse complement of the risk allele is the same as the reference or alternate allele.
Examples:
>>> d = [
... ('A', 'A', 'G'),
... ('A', 'T', 'G'),
... ('A', 'C', 'G'),
... ('A', 'A', '?'),
... (None, None, 'A'),
... ]
>>> df = spark.createDataFrame(d, ['riskAllele', 'referenceAllele', 'alternateAllele'])
>>> df.withColumn("isConcordant", GWASCatalogCuratedAssociationsParser._check_concordance(f.col("riskAllele"),f.col('referenceAllele'), f.col('alternateAllele'))).show()
+----------+---------------+---------------+------------+
|riskAllele|referenceAllele|alternateAllele|isConcordant|
+----------+---------------+---------------+------------+
| A| A| G| true|
| A| T| G| true|
| A| C| G| false|
| A| A| ?| true|
| null| null| A| true|
+----------+---------------+---------------+------------+
<BLANKLINE>
"""
# Calculating the reverse complement of the risk allele:
risk_allele_reverse_complement = f.when(
risk_allele.rlike(r"^[ACTG]+$"),
f.reverse(f.translate(risk_allele, "ACTG", "TGAC")),
).otherwise(risk_allele)
# OK, is the risk allele or the reverse complent is the same as the mapped alleles:
return (
f.when(
(risk_allele == reference_allele) | (risk_allele == alternate_allele),
True,
)
# If risk allele is found on the negative strand:
.when(
(risk_allele_reverse_complement == reference_allele)
| (risk_allele_reverse_complement == alternate_allele),
True,
)
# If risk allele is ambiguous, still accepted: < This condition could be reconsidered
.when(risk_allele == "?", True)
# If the association could not be mapped we keep it:
.when(reference_allele.isNull(), True)
# Allele is discordant:
.otherwise(False)
)
@staticmethod
def _get_reverse_complement(allele_col: Column) -> Column:
"""A function to return the reverse complement of an allele column.
It takes a string and returns the reverse complement of that string if it's a DNA sequence,
otherwise it returns the original string. Assumes alleles in upper case.
Args:
allele_col (Column): The column containing the allele to reverse complement.
Returns:
Column: A column that is the reverse complement of the allele column.
Examples:
>>> d = [{"allele": 'A'}, {"allele": 'T'},{"allele": 'G'}, {"allele": 'C'},{"allele": 'AC'}, {"allele": 'GTaatc'},{"allele": '?'}, {"allele": None}]
>>> df = spark.createDataFrame(d)
>>> df.withColumn("revcom_allele", GWASCatalogCuratedAssociationsParser._get_reverse_complement(f.col("allele"))).show()
+------+-------------+
|allele|revcom_allele|
+------+-------------+
| A| T|
| T| A|
| G| C|
| C| G|
| AC| GT|
|GTaatc| GATTAC|
| ?| ?|
| null| null|
+------+-------------+
<BLANKLINE>
"""
allele_col = f.upper(allele_col)
return f.when(
allele_col.rlike("[ACTG]+"),
f.reverse(f.translate(allele_col, "ACTG", "TGAC")),
).otherwise(allele_col)
@staticmethod
def _effect_needs_harmonisation(
risk_allele: Column, reference_allele: Column
) -> Column:
"""A function to check if the effect allele needs to be harmonised.
Args:
risk_allele (Column): Risk allele column
reference_allele (Column): Effect allele column
Returns:
Column: A boolean column indicating if the effect allele needs to be harmonised.
Examples:
>>> d = [{"risk": 'A', "reference": 'A'}, {"risk": 'A', "reference": 'T'}, {"risk": 'AT', "reference": 'TA'}, {"risk": 'AT', "reference": 'AT'}]
>>> df = spark.createDataFrame(d)
>>> df.withColumn("needs_harmonisation", GWASCatalogCuratedAssociationsParser._effect_needs_harmonisation(f.col("risk"), f.col("reference"))).show()
+---------+----+-------------------+
|reference|risk|needs_harmonisation|
+---------+----+-------------------+
| A| A| true|
| T| A| true|
| TA| AT| false|
| AT| AT| true|
+---------+----+-------------------+
<BLANKLINE>
"""
return (risk_allele == reference_allele) | (
risk_allele
== GWASCatalogCuratedAssociationsParser._get_reverse_complement(
reference_allele
)
)
@staticmethod
def _are_alleles_palindromic(
reference_allele: Column, alternate_allele: Column
) -> Column:
"""A function to check if the alleles are palindromic.
Args:
reference_allele (Column): Reference allele column
alternate_allele (Column): Alternate allele column
Returns:
Column: A boolean column indicating if the alleles are palindromic.
Examples:
>>> d = [{"reference": 'A', "alternate": 'T'}, {"reference": 'AT', "alternate": 'AG'}, {"reference": 'AT', "alternate": 'AT'}, {"reference": 'CATATG', "alternate": 'CATATG'}, {"reference": '-', "alternate": None}]
>>> df = spark.createDataFrame(d)
>>> df.withColumn("is_palindromic", GWASCatalogCuratedAssociationsParser._are_alleles_palindromic(f.col("reference"), f.col("alternate"))).show()
+---------+---------+--------------+
|alternate|reference|is_palindromic|
+---------+---------+--------------+
| T| A| true|
| AG| AT| false|
| AT| AT| true|
| CATATG| CATATG| true|
| null| -| false|
+---------+---------+--------------+
<BLANKLINE>
"""
revcomp = GWASCatalogCuratedAssociationsParser._get_reverse_complement(
alternate_allele
)
return (
f.when(reference_allele == revcomp, True)
.when(revcomp.isNull(), False)
.otherwise(False)
)
@staticmethod
def _harmonise_beta(
effect_size: Column,
confidence_interval: Column,
flipping_needed: Column,
) -> Column:
"""A function to extract the beta value from the effect size and confidence interval and harmonises for the alternate allele.
If the confidence interval contains the word "increase" or "decrease" it indicates, we are dealing with betas.
If it's "increase" and the effect size needs to be harmonized, then multiply the effect size by -1.
The sign of the effect size is flipped if the confidence interval contains "decrease".
eg. if the reported value is 0.5, and the confidence interval tells "decrease"? -> beta is -0.5
Args:
effect_size (Column): GWAS Catalog effect size column.
confidence_interval (Column): GWAS Catalog confidence interval column to know the direction of the effect.
flipping_needed (Column): Boolean flag indicating if effect needs to be flipped based on the alleles.
Returns:
Column: A column containing the beta value.
Examples:
>>> d = [
... # positive effect -no flipping:
... (0.5, 'increase', False),
... # Positive effect - flip:
... (0.5, 'decrease', False),
... # Positive effect - flip:
... (0.5, 'decrease', True),
... # Negative effect - no flip:
... (0.5, 'increase', True),
... # Negative effect - flip:
... (0.5, 'decrease', False),
... ]
>>> (
... spark.createDataFrame(d, ['effect', 'ci_text', 'flip'])
... .select("effect", "ci_text", 'flip', GWASCatalogCuratedAssociationsParser._harmonise_beta(f.col("effect"), f.col("ci_text"), f.lit(False)).alias("beta"))
... .show()
... )
+------+--------+-----+----+
|effect| ci_text| flip|beta|
+------+--------+-----+----+
| 0.5|increase|false| 0.5|
| 0.5|decrease|false|-0.5|
| 0.5|decrease| true|-0.5|
| 0.5|increase| true| 0.5|
| 0.5|decrease|false|-0.5|
+------+--------+-----+----+
<BLANKLINE>
"""
return (
f.when(
(flipping_needed & confidence_interval.contains("increase"))
| (~flipping_needed & confidence_interval.contains("decrease")),
-effect_size,
)
.otherwise(effect_size)
.cast(DoubleType())
)
@staticmethod
def _harmonise_odds_ratio(
effect_size: Column,
flipping_needed: Column,
) -> Column:
"""Odds ratio is either propagated as is, or flipped if indicated, meaning returning a reciprocal value.
Args:
effect_size (Column): containing effect size,
flipping_needed (Column): Boolean flag indicating if effect needs to be flipped
Returns:
Column: A column with the odds ratio, or 1/odds_ratio if harmonization required.
Examples:
>>> d = [(0.5, False), (0.5, True), (0.0, False), (0.0, True)]
>>> (
... spark.createDataFrame(d, ['effect', 'flip'])
... .select("effect", "flip", GWASCatalogCuratedAssociationsParser._harmonise_odds_ratio(f.col("effect"), f.col("flip")).alias("odds_ratio"))
... .show()
... )
+------+-----+----------+
|effect| flip|odds_ratio|
+------+-----+----------+
| 0.5|false| 0.5|
| 0.5| true| 2.0|
| 0.0|false| 0.0|
| 0.0| true| null|
+------+-----+----------+
<BLANKLINE>
"""
return (
# We are not flipping zero effect size:
f.when((effect_size.cast(DoubleType()) == 0) & flipping_needed, f.lit(None))
.when(
flipping_needed,
1 / effect_size,
)
.otherwise(effect_size)
.cast(DoubleType())
)
@staticmethod
def _concatenate_substudy_description(
association_trait: Column, pvalue_text: Column, mapped_trait_uri: Column
) -> Column:
"""Substudy description parsing. Complex string containing metadata about the substudy (e.g. QTL, specific EFO, etc.).
Args:
association_trait (Column): GWAS Catalog association trait column
pvalue_text (Column): GWAS Catalog p-value text column
mapped_trait_uri (Column): GWAS Catalog mapped trait URI column
Returns:
Column: A column with the substudy description in the shape trait|pvaluetext1_pvaluetext2|EFO1_EFO2.
Examples:
>>> df = spark.createDataFrame([
... ("Height", "http://www.ebi.ac.uk/efo/EFO_0000001,http://www.ebi.ac.uk/efo/EFO_0000002", "European Ancestry"),
... ("Schizophrenia", "http://www.ebi.ac.uk/efo/MONDO_0005090", None)],
... ["association_trait", "mapped_trait_uri", "pvalue_text"]
... )
>>> df.withColumn('substudy_description', GWASCatalogCuratedAssociationsParser._concatenate_substudy_description(df.association_trait, df.pvalue_text, df.mapped_trait_uri)).show(truncate=False)
+-----------------+-------------------------------------------------------------------------+-----------------+------------------------------------------+
|association_trait|mapped_trait_uri |pvalue_text |substudy_description |
+-----------------+-------------------------------------------------------------------------+-----------------+------------------------------------------+
|Height |http://www.ebi.ac.uk/efo/EFO_0000001,http://www.ebi.ac.uk/efo/EFO_0000002|European Ancestry|Height|EA|EFO_0000001/EFO_0000002 |
|Schizophrenia |http://www.ebi.ac.uk/efo/MONDO_0005090 |null |Schizophrenia|no_pvalue_text|MONDO_0005090|
+-----------------+-------------------------------------------------------------------------+-----------------+------------------------------------------+
<BLANKLINE>
"""
p_value_text = f.coalesce(
GWASCatalogCuratedAssociationsParser._normalise_pvaluetext(pvalue_text),
f.array(f.lit("no_pvalue_text")),
)
return f.concat_ws(
"|",
association_trait,
f.concat_ws(
"/",
p_value_text,
),
f.concat_ws(
"/",
parse_efos(mapped_trait_uri),
),
)
@staticmethod
def _qc_all(
qc: Column,
chromosome: Column,
position: Column,
reference_allele: Column,
alternate_allele: Column,
strongest_snp_risk_allele: Column,
p_value_mantissa: Column,
p_value_exponent: Column,
p_value_cutoff: float,
) -> Column:
"""Flag associations that fail any QC.
Args:
qc (Column): QC column
chromosome (Column): Chromosome column
position (Column): Position column
reference_allele (Column): Reference allele column
alternate_allele (Column): Alternate allele column
strongest_snp_risk_allele (Column): Strongest SNP risk allele column
p_value_mantissa (Column): P-value mantissa column
p_value_exponent (Column): P-value exponent column
p_value_cutoff (float): P-value cutoff
Returns:
Column: Updated QC column with flag.
"""
qc = GWASCatalogCuratedAssociationsParser._qc_variant_interactions(
qc, strongest_snp_risk_allele
)
qc = StudyLocus._qc_subsignificant_associations(
qc, p_value_mantissa, p_value_exponent, p_value_cutoff
)
qc = GWASCatalogCuratedAssociationsParser._qc_genomic_location(
qc, chromosome, position
)
qc = GWASCatalogCuratedAssociationsParser._qc_variant_inconsistencies(
qc, chromosome, position, strongest_snp_risk_allele
)
qc = GWASCatalogCuratedAssociationsParser._qc_unmapped_variants(
qc, alternate_allele
)
qc = GWASCatalogCuratedAssociationsParser._qc_palindromic_alleles(
qc, reference_allele, alternate_allele
)
return qc
@staticmethod
def _qc_variant_interactions(
qc: Column, strongest_snp_risk_allele: Column
) -> Column:
"""Flag associations based on variant x variant interactions.
Args:
qc (Column): QC column
strongest_snp_risk_allele (Column): Column with the strongest SNP risk allele
Returns:
Column: Updated QC column with flag.
"""
return StudyLocus.update_quality_flag(
qc,
strongest_snp_risk_allele.contains(";"),
StudyLocusQualityCheck.COMPOSITE_FLAG,
)
@staticmethod
def _qc_genomic_location(
qc: Column, chromosome: Column, position: Column
) -> Column:
"""Flag associations without genomic location in GWAS Catalog.
Args:
qc (Column): QC column
chromosome (Column): Chromosome column in GWAS Catalog
position (Column): Position column in GWAS Catalog
Returns:
Column: Updated QC column with flag.
Examples:
>>> import pyspark.sql.types as t
>>> d = [{'qc': None, 'chromosome': None, 'position': None}, {'qc': None, 'chromosome': '1', 'position': None}, {'qc': None, 'chromosome': None, 'position': 1}, {'qc': None, 'chromosome': '1', 'position': 1}]
>>> df = spark.createDataFrame(d, schema=t.StructType([t.StructField('qc', t.ArrayType(t.StringType()), True), t.StructField('chromosome', t.StringType()), t.StructField('position', t.IntegerType())]))
>>> df.withColumn('qc', GWASCatalogCuratedAssociationsParser._qc_genomic_location(df.qc, df.chromosome, df.position)).show(truncate=False)
+----------------------------+----------+--------+
|qc |chromosome|position|
+----------------------------+----------+--------+
|[Incomplete genomic mapping]|null |null |
|[Incomplete genomic mapping]|1 |null |
|[Incomplete genomic mapping]|null |1 |
|[] |1 |1 |
+----------------------------+----------+--------+
<BLANKLINE>
"""
return StudyLocus.update_quality_flag(
qc,
position.isNull() | chromosome.isNull(),
StudyLocusQualityCheck.NO_GENOMIC_LOCATION_FLAG,
)
@staticmethod
def _qc_variant_inconsistencies(
qc: Column,
chromosome: Column,
position: Column,
strongest_snp_risk_allele: Column,
) -> Column:
"""Flag associations with inconsistencies in the variant annotation.
Args:
qc (Column): QC column
chromosome (Column): Chromosome column in GWAS Catalog
position (Column): Position column in GWAS Catalog
strongest_snp_risk_allele (Column): Strongest SNP risk allele column in GWAS Catalog
Returns:
Column: Updated QC column with flag.
"""
return StudyLocus.update_quality_flag(
qc,
# Number of chromosomes does not correspond to the number of positions:
(f.size(f.split(chromosome, ";")) != f.size(f.split(position, ";")))
# Number of chromosome values different from riskAllele values:
| (
f.size(f.split(chromosome, ";"))
!= f.size(f.split(strongest_snp_risk_allele, ";"))
),
StudyLocusQualityCheck.INCONSISTENCY_FLAG,
)
@staticmethod
def _qc_unmapped_variants(qc: Column, alternate_allele: Column) -> Column:
"""Flag associations with variants not mapped to variantAnnotation.
Args:
qc (Column): QC column
alternate_allele (Column): alternate allele
Returns:
Column: Updated QC column with flag.
Example:
>>> import pyspark.sql.types as t
>>> d = [{'alternate_allele': 'A', 'qc': None}, {'alternate_allele': None, 'qc': None}]
>>> schema = t.StructType([t.StructField('alternate_allele', t.StringType(), True), t.StructField('qc', t.ArrayType(t.StringType()), True)])
>>> df = spark.createDataFrame(data=d, schema=schema)
>>> df.withColumn("new_qc", GWASCatalogCuratedAssociationsParser._qc_unmapped_variants(f.col("qc"), f.col("alternate_allele"))).show()
+----------------+----+--------------------+
|alternate_allele| qc| new_qc|
+----------------+----+--------------------+
| A|null| []|
| null|null|[No mapping in Gn...|
+----------------+----+--------------------+
<BLANKLINE>
"""
return StudyLocus.update_quality_flag(
qc,
alternate_allele.isNull(),
StudyLocusQualityCheck.NON_MAPPED_VARIANT_FLAG,
)
@staticmethod
def _qc_palindromic_alleles(
qc: Column, reference_allele: Column, alternate_allele: Column
) -> Column:
"""Flag associations with palindromic variants which effects can not be harmonised.
Args:
qc (Column): QC column
reference_allele (Column): reference allele
alternate_allele (Column): alternate allele
Returns:
Column: Updated QC column with flag.
Example:
>>> import pyspark.sql.types as t
>>> schema = t.StructType([t.StructField('reference_allele', t.StringType(), True), t.StructField('alternate_allele', t.StringType(), True), t.StructField('qc', t.ArrayType(t.StringType()), True)])
>>> d = [{'reference_allele': 'A', 'alternate_allele': 'T', 'qc': None}, {'reference_allele': 'AT', 'alternate_allele': 'TA', 'qc': None}, {'reference_allele': 'AT', 'alternate_allele': 'AT', 'qc': None}]
>>> df = spark.createDataFrame(data=d, schema=schema)
>>> df.withColumn("qc", GWASCatalogCuratedAssociationsParser._qc_palindromic_alleles(f.col("qc"), f.col("reference_allele"), f.col("alternate_allele"))).show(truncate=False)
+----------------+----------------+---------------------------------------+
|reference_allele|alternate_allele|qc |
+----------------+----------------+---------------------------------------+
|A |T |[Palindrome alleles - cannot harmonize]|
|AT |TA |[] |
|AT |AT |[Palindrome alleles - cannot harmonize]|
+----------------+----------------+---------------------------------------+
<BLANKLINE>
"""
return StudyLocus.update_quality_flag(
qc,
GWASCatalogCuratedAssociationsParser._are_alleles_palindromic(
reference_allele, alternate_allele
),
StudyLocusQualityCheck.PALINDROMIC_ALLELE_FLAG,
)
@staticmethod
def _get_effect_type(ci_text: Column) -> Column:
"""Extracts the effect type from the 95% CI text.
The GWAS Catalog confidence interval column contains text that can be used to infer the effect type.
If the text contains "increase" or "decrease", the effect type is beta, otherwise it is odds ratio.
Null columns return null as the effect type.
Args:
ci_text (Column): Column containing the 95% CI text.
Returns:
Column: A column containing the effect type.
Examples:
>>> data = [{"ci_text": "95% CI: [0.1-0.2]"}, {"ci_text": "95% CI: [0.1-0.2] increase"}, {"ci_text": "95% CI: [0.1-0.2] decrease"}, {"ci_text": None}]
>>> spark.createDataFrame(data).select('ci_text', GWASCatalogCuratedAssociationsParser._get_effect_type(f.col('ci_text')).alias('effect_type')).show(truncate=False)
+--------------------------+-----------+
|ci_text |effect_type|
+--------------------------+-----------+
|95% CI: [0.1-0.2] |odds_ratio |
|95% CI: [0.1-0.2] increase|beta |
|95% CI: [0.1-0.2] decrease|beta |
|null |null |
+--------------------------+-----------+
<BLANKLINE>
"""
return f.when(
f.lower(ci_text).contains("increase")
| f.lower(ci_text).contains("decrease"),
f.lit("beta"),
).when(ci_text.isNotNull(), f.lit("odds_ratio"))
@staticmethod
def harmonise_association_effect_to_beta(
df: DataFrame,
) -> DataFrame:
"""Harmonise effect to beta value.
The harmonisation process has a number of steps:
- Extracting the reported effect allele.
- Flagging palindromic alleles.
- Flagging associations where the effect direction needs to be flipped.
- Flagging the effect type.
- Getting the standard error from the confidence interval text.
- Harmonising both beta and odds ratio.
- Converting the odds ratio to beta.
Args:
df (DataFrame): DataFrame with the following columns:
Returns:
DataFrame: DataFrame with the following columns:
Raises:
ValueError: If any of the required columns are missing.
Examples:
>>> data = [
... # Flagged as palindromic:
... ('rs123-T', 'A', 'T', '0.1', '[0.08-0.12] unit increase'),
... # Not palindromic, beta needs to be flipped:
... ('rs123-C', 'G', 'T', '0.1', '[0.08-0.12] unit increase'),
... # Beta is not flipped:
... ('rs123-T', 'C', 'T', '0.1', '[0.08-0.12] unit increase'),
... # odds ratio:
... ('rs123-T', 'C', 'T', '0.1', '[0.08-0.12]'),
... # odds ratio flipped:
... ('rs123-C', 'G', 'T', '0.1', '[0.08-0.12]'),
... ]
>>> schema = ["STRONGEST SNP-RISK ALLELE", "referenceAllele", "alternateAllele", "OR or BETA", "95% CI (TEXT)"]
>>> df = spark.createDataFrame(data, schema)
>>> GWASCatalogCuratedAssociationsParser.harmonise_association_effect_to_beta(df).show()
+-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
|STRONGEST SNP-RISK ALLELE|referenceAllele|alternateAllele|OR or BETA| 95% CI (TEXT)| beta| standardError|
+-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
| rs123-T| A| T| 0.1|[0.08-0.12] unit ...| null| null|
| rs123-C| G| T| 0.1|[0.08-0.12] unit ...| -0.1|0.010204081404574064|
| rs123-T| C| T| 0.1|[0.08-0.12] unit ...| 0.1|0.010204081404574064|
| rs123-T| C| T| 0.1| [0.08-0.12]|-2.3025850929940455| null|
| rs123-C| G| T| 0.1| [0.08-0.12]| 2.302585092994046| null|
+-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
<BLANKLINE>
"""
# Testing if all columns are in the dataframe:
required_columns = [
"STRONGEST SNP-RISK ALLELE",
"referenceAllele",
"alternateAllele",
"OR or BETA",
"95% CI (TEXT)",
]
for column in required_columns:
if column not in df.columns:
raise ValueError(
f"Column {column} is required for harmonising effect to beta value."
)
return (
df.withColumn(
"reportedRiskAllele",
GWASCatalogCuratedAssociationsParser._extract_risk_allele(
f.col("STRONGEST SNP-RISK ALLELE")
),
)
.withColumns(
{
# Flag palindromic alleles:
"isAllelePalindromic": GWASCatalogCuratedAssociationsParser._are_alleles_palindromic(
f.col("referenceAllele"), f.col("alternateAllele")
),
# Flag associations, where the effect direction needs to be flipped:
"needsFlipping": GWASCatalogCuratedAssociationsParser._effect_needs_harmonisation(
f.col("reportedRiskAllele"), f.col("referenceAllele")
),
# Flag effect type:
"effectType": GWASCatalogCuratedAssociationsParser._get_effect_type(
f.col("95% CI (TEXT)")
),
# Get standard error from confidence interval text:
"standardError": get_standard_error_from_confidence_interval(
f.regexp_extract(
"95% CI (TEXT)", r"\[(\d+\.*\d*)-\d+\.*\d*\]", 1
).cast(FloatType()),
f.regexp_extract(
"95% CI (TEXT)", r"\[\d+\.*\d*-(\d+\.*\d*)\]", 1
).cast(FloatType()),
),
}
)
# Harmonise both beta and odds ratio:
.withColumns(
{ # Normalise beta value of the association:
"effect_beta": f.when(
(f.col("effectType") == "beta")
& (~f.col("isAllelePalindromic")),
GWASCatalogCuratedAssociationsParser._harmonise_beta(
f.col("OR or BETA"),
f.col("95% CI (TEXT)"),
f.col("needsFlipping"),
),
),
# Normalise odds ratio of the association:
"effect_odds_ratio": f.when(
(f.col("effectType") == "odds_ratio")
& (~f.col("isAllelePalindromic")),
GWASCatalogCuratedAssociationsParser._harmonise_odds_ratio(
f.col("OR or BETA"),
f.col("needsFlipping"),
),
),
},
)
.select(
*df.columns,
# Harmonise OR effect to beta:
*convert_odds_ratio_to_beta(
f.col("effect_beta"),
f.col("effect_odds_ratio"),
f.col("standardError"),
),
)
)
@classmethod
def from_source(
cls: type[GWASCatalogCuratedAssociationsParser],
gwas_associations: DataFrame,
gnomad_variants: VariantIndex,
pvalue_threshold: float = WindowBasedClumpingStepConfig.gwas_significance,
) -> StudyLocusGWASCatalog:
"""Read GWASCatalog associations.
It reads the GWAS Catalog association dataset, selects and renames columns, casts columns, and
applies some pre-defined filters on the data:
Args:
gwas_associations (DataFrame): GWAS Catalog raw associations dataset.
gnomad_variants (VariantIndex): Variant dataset from GnomAD, with allele frequencies.
pvalue_threshold (float): P-value threshold for flagging associations.
Returns:
StudyLocusGWASCatalog: GWASCatalogAssociations dataset
pvalue_threshold is keeped in sync with the WindowBasedClumpingStep gwas_significance.
"""
return StudyLocusGWASCatalog(
_df=gwas_associations.withColumn(
# temporary column
"rowId", f.monotonically_increasing_id().cast(StringType())
)
.transform(
# Map/harmonise variants to variant annotation dataset:
# This function adds columns: variantId, referenceAllele, alternateAllele, chromosome, position
lambda df: GWASCatalogCuratedAssociationsParser._map_variants_to_gnomad_variants(
df, gnomad_variants
)
)
.withColumns(
# Perform all quality control checks:
{
"qualityControls": GWASCatalogCuratedAssociationsParser._qc_all(
f.array().alias("qualityControls"),
f.col("CHR_ID"),
f.col("CHR_POS").cast(IntegerType()),
f.col("referenceAllele"),
f.col("alternateAllele"),
f.col("STRONGEST SNP-RISK ALLELE"),
*GWASCatalogCuratedAssociationsParser._parse_pvalue(
f.col("P-VALUE")
),
pvalue_threshold,
)
}
)
# Harmonising effect to beta value and flip effect if needed:
.transform(cls.harmonise_association_effect_to_beta)
.withColumnRenamed("STUDY ACCESSION", "studyId")
# Adding study-locus id:
.withColumn(
"studyLocusId",
StudyLocus.assign_study_locus_id(
["studyId", "variantId"]
),
)
.select(
# INSIDE STUDY-LOCUS SCHEMA:
"studyLocusId",
"variantId",
# Mapped genomic location of the variant (; separated list)
"chromosome",
"position",
"studyId",
# p-value of the association, string: split into exponent and mantissa.
*GWASCatalogCuratedAssociationsParser._parse_pvalue(f.col("P-VALUE")),
# Capturing phenotype granularity at the association level
GWASCatalogCuratedAssociationsParser._concatenate_substudy_description(
f.col("DISEASE/TRAIT"),
f.col("P-VALUE (TEXT)"),
f.col("MAPPED_TRAIT_URI"),
).alias("subStudyDescription"),
# Quality controls (array of strings)
"qualityControls",
"beta",
"standardError",
),
_schema=StudyLocusGWASCatalog.get_schema(),
)
|