Skip to content

Associations

gentropy.datasource.gwas_catalog.associations.GWASCatalogCuratedAssociationsParser dataclass

GWAS Catalog curated associations parser.

Source code in src/gentropy/datasource/gwas_catalog/associations.py
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
@dataclass
class GWASCatalogCuratedAssociationsParser:
    """GWAS Catalog curated associations parser."""

    @staticmethod
    def convert_gnomad_position_to_ensembl(
        position: Column, reference: Column, alternate: Column
    ) -> Column:
        """Convert GnomAD variant position to Ensembl variant position.

        For indels (the reference or alternate allele is longer than 1), then adding 1 to the position, for SNPs,
        the position is unchanged. More info about the problem: https://www.biostars.org/p/84686/

        Args:
            position (Column): Position of the variant in GnomAD's coordinates system.
            reference (Column): The reference allele in GnomAD's coordinates system.
            alternate (Column): The alternate allele in GnomAD's coordinates system.

        Returns:
            Column: The position of the variant in the Ensembl genome.

        Examples:
            >>> d = [(1, "A", "C"), (2, "AA", "C"), (3, "A", "AA")]
            >>> df = spark.createDataFrame(d).toDF("position", "reference", "alternate")
            >>> df.withColumn("new_position", GWASCatalogCuratedAssociationsParser.convert_gnomad_position_to_ensembl(f.col("position"), f.col("reference"), f.col("alternate"))).show()
            +--------+---------+---------+------------+
            |position|reference|alternate|new_position|
            +--------+---------+---------+------------+
            |       1|        A|        C|           1|
            |       2|       AA|        C|           3|
            |       3|        A|       AA|           4|
            +--------+---------+---------+------------+
            <BLANKLINE>
        """
        return f.when(
            (f.length(reference) > 1) | (f.length(alternate) > 1), position + 1
        ).otherwise(position)

    @staticmethod
    def _parse_pvalue(pvalue: Column) -> tuple[Column, Column]:
        """Parse p-value column.

        Args:
            pvalue (Column): p-value [string]

        Returns:
            tuple[Column, Column]: p-value mantissa and exponent

        Example:
            >>> import pyspark.sql.types as t
            >>> d = [("1.0"), ("0.5"), ("1E-20"), ("3E-3"), ("1E-1000")]
            >>> df = spark.createDataFrame(d, t.StringType())
            >>> df.select('value',*GWASCatalogCuratedAssociationsParser._parse_pvalue(f.col('value'))).show()
            +-------+--------------+--------------+
            |  value|pValueMantissa|pValueExponent|
            +-------+--------------+--------------+
            |    1.0|           1.0|             1|
            |    0.5|           0.5|             1|
            |  1E-20|           1.0|           -20|
            |   3E-3|           3.0|            -3|
            |1E-1000|           1.0|         -1000|
            +-------+--------------+--------------+
            <BLANKLINE>

        """
        split = f.split(pvalue, "E")
        return split.getItem(0).cast("float").alias("pValueMantissa"), f.coalesce(
            split.getItem(1).cast("integer"), f.lit(1)
        ).alias("pValueExponent")

    @staticmethod
    def _normalise_pvaluetext(p_value_text: Column) -> Column:
        """Normalised p-value text column to a standardised format.

        For cases where there is no mapping, the value is set to null.

        Args:
            p_value_text (Column): `pValueText` column from GWASCatalog

        Returns:
            Column: Array column after using GWAS Catalog mappings. There might be multiple mappings for a single p-value text.

        Example:
            >>> import pyspark.sql.types as t
            >>> d = [("European Ancestry"), ("African ancestry"), ("Alzheimer’s Disease"), ("(progression)"), (""), (None)]
            >>> df = spark.createDataFrame(d, t.StringType())
            >>> df.withColumn('normalised', GWASCatalogCuratedAssociationsParser._normalise_pvaluetext(f.col('value'))).show()
            +-------------------+----------+
            |              value|normalised|
            +-------------------+----------+
            |  European Ancestry|      [EA]|
            |   African ancestry|      [AA]|
            |Alzheimer’s Disease|      [AD]|
            |      (progression)|      null|
            |                   |      null|
            |               null|      null|
            +-------------------+----------+
            <BLANKLINE>

        """
        # GWAS Catalog to p-value mapping
        json_dict = json.loads(
            pkg_resources.read_text(data, "gwas_pValueText_map.json", encoding="utf-8")
        )
        map_expr = f.create_map(*[f.lit(x) for x in chain(*json_dict.items())])

        splitted_col = f.split(f.regexp_replace(p_value_text, r"[\(\)]", ""), ",")
        mapped_col = f.transform(splitted_col, lambda x: map_expr[x])
        return f.when(f.forall(mapped_col, lambda x: x.isNull()), None).otherwise(
            mapped_col
        )

    @staticmethod
    def _extract_risk_allele(risk_allele: Column) -> Column:
        """Extract risk allele from provided "STRONGEST SNP-RISK ALLELE" input column.

        If multiple risk alleles are present, the first one is returned.

        Args:
            risk_allele (Column): `riskAllele` column from GWASCatalog

        Returns:
            Column: mapped using GWAS Catalog mapping

        Example:
            >>> import pyspark.sql.types as t
            >>> d = [("rs1234-A-G"), ("rs1234-A"), ("rs1234-A; rs1235-G")]
            >>> df = spark.createDataFrame(d, t.StringType())
            >>> df.withColumn('normalised', GWASCatalogCuratedAssociationsParser._extract_risk_allele(f.col('value'))).show()
            +------------------+----------+
            |             value|normalised|
            +------------------+----------+
            |        rs1234-A-G|         A|
            |          rs1234-A|         A|
            |rs1234-A; rs1235-G|         A|
            +------------------+----------+
            <BLANKLINE>
        """
        # GWAS Catalog to risk allele mapping
        return f.split(f.split(risk_allele, "; ").getItem(0), "-").getItem(1)

    @staticmethod
    def _collect_rsids(
        snp_id: Column, snp_id_current: Column, risk_allele: Column
    ) -> Column:
        """It takes three columns, and returns an array of distinct values from those columns.

        Args:
            snp_id (Column): The original snp id from the GWAS catalog.
            snp_id_current (Column): The current snp id field is just a number at the moment (stored as a string). Adding 'rs' prefix if looks good.
            risk_allele (Column): The risk allele for the SNP.

        Returns:
            Column: An array of distinct values.
        """
        # The current snp id field is just a number at the moment (stored as a string). Adding 'rs' prefix if looks good.
        snp_id_current = f.when(
            snp_id_current.rlike("^[0-9]*$"),
            f.format_string("rs%s", snp_id_current),
        )
        # Cleaning risk allele:
        risk_allele = f.split(risk_allele, "-").getItem(0)

        # Collecting all values:
        return f.array_distinct(f.array(snp_id, snp_id_current, risk_allele))

    @staticmethod
    def _map_variants_to_gnomad_variants(
        gwas_associations: DataFrame, variant_index: VariantIndex
    ) -> DataFrame:
        """Add variant metadata in associations.

        Args:
            gwas_associations (DataFrame): raw GWAS Catalog associations.
            variant_index (VariantIndex): GnomaAD variants dataset with allele frequencies.

        Returns:
            DataFrame: GWAS Catalog associations data including `variantId`, `referenceAllele`,
            `alternateAllele`, `chromosome`, `position` with variant metadata
        """
        # Subset of GWAS Catalog associations required for resolving variant IDs:
        gwas_associations_subset = gwas_associations.select(
            "rowId",
            f.col("CHR_ID").alias("chromosome"),
            # The positions from GWAS Catalog are from ensembl that causes discrepancy for indels:
            f.col("CHR_POS").cast(IntegerType()).alias("ensemblPosition"),
            # List of all SNPs associated with the variant
            GWASCatalogCuratedAssociationsParser._collect_rsids(
                f.split(f.col("SNPS"), "; ").getItem(0),
                f.col("SNP_ID_CURRENT"),
                f.split(f.col("STRONGEST SNP-RISK ALLELE"), "; ").getItem(0),
            ).alias("rsIdsGwasCatalog"),
            GWASCatalogCuratedAssociationsParser._extract_risk_allele(
                f.col("STRONGEST SNP-RISK ALLELE")
            ).alias("riskAllele"),
        )

        # Subset of variant annotation required for GWAS Catalog annotations:
        va_subset = variant_index.df.select(
            "variantId",
            "chromosome",
            # Calculate the position in Ensembl coordinates for indels:
            GWASCatalogCuratedAssociationsParser.convert_gnomad_position_to_ensembl(
                f.col("position"),
                f.col("referenceAllele"),
                f.col("alternateAllele"),
            ).alias("ensemblPosition"),
            # Keeping GnomAD position:
            "position",
            f.col("rsIds").alias("rsIdsGnomad"),
            "referenceAllele",
            "alternateAllele",
            "alleleFrequencies",
            variant_index.max_maf().alias("maxMaf"),
        ).join(
            gwas_associations_subset.select("chromosome", "ensemblPosition").distinct(),
            on=["chromosome", "ensemblPosition"],
            how="inner",
        )

        # Semi-resolved ids (still contains duplicates when conclusion was not possible to make
        # based on rsIds or allele concordance)
        filtered_associations = (
            gwas_associations_subset.join(
                va_subset,
                on=["chromosome", "ensemblPosition"],
                how="left",
            )
            .withColumn(
                "rsIdFilter",
                GWASCatalogCuratedAssociationsParser._flag_mappings_to_retain(
                    f.col("rowId"),
                    GWASCatalogCuratedAssociationsParser._compare_rsids(
                        f.col("rsIdsGnomad"), f.col("rsIdsGwasCatalog")
                    ),
                ),
            )
            .withColumn(
                "concordanceFilter",
                GWASCatalogCuratedAssociationsParser._flag_mappings_to_retain(
                    f.col("rowId"),
                    GWASCatalogCuratedAssociationsParser._check_concordance(
                        f.col("riskAllele"),
                        f.col("referenceAllele"),
                        f.col("alternateAllele"),
                    ),
                ),
            )
            .filter(
                # Filter out rows where GWAS Catalog rsId does not match with GnomAD rsId,
                # but there is corresponding variant for the same association
                f.col("rsIdFilter")
                # or filter out rows where GWAS Catalog alleles are not concordant with GnomAD alleles,
                # but there is corresponding variant for the same association
                | f.col("concordanceFilter")
            )
        )

        # Keep only highest maxMaf variant per rowId
        fully_mapped_associations = get_record_with_maximum_value(
            filtered_associations, grouping_col="rowId", sorting_col="maxMaf"
        ).select(
            "rowId",
            "variantId",
            "referenceAllele",
            "alternateAllele",
            "chromosome",
            "position",
        )

        return gwas_associations.join(
            fully_mapped_associations, on="rowId", how="left"
        )

    @staticmethod
    def _compare_rsids(gnomad: Column, gwas: Column) -> Column:
        """If the intersection of the two arrays is greater than 0, return True, otherwise return False.

        Args:
            gnomad (Column): rsids from gnomad
            gwas (Column): rsids from the GWAS Catalog

        Returns:
            Column: A boolean column that is true if the GnomAD rsIDs can be found in the GWAS rsIDs.

        Examples:
            >>> d = [
            ...    (1, ["rs123", "rs523"], ["rs123"]),
            ...    (2, [], ["rs123"]),
            ...    (3, ["rs123", "rs523"], []),
            ...    (4, [], []),
            ... ]
            >>> df = spark.createDataFrame(d, ['associationId', 'gnomad', 'gwas'])
            >>> df.withColumn("rsid_matches", GWASCatalogCuratedAssociationsParser._compare_rsids(f.col("gnomad"),f.col('gwas'))).show()
            +-------------+--------------+-------+------------+
            |associationId|        gnomad|   gwas|rsid_matches|
            +-------------+--------------+-------+------------+
            |            1|[rs123, rs523]|[rs123]|        true|
            |            2|            []|[rs123]|       false|
            |            3|[rs123, rs523]|     []|       false|
            |            4|            []|     []|       false|
            +-------------+--------------+-------+------------+
            <BLANKLINE>

        """
        return f.when(f.size(f.array_intersect(gnomad, gwas)) > 0, True).otherwise(
            False
        )

    @staticmethod
    def _flag_mappings_to_retain(
        association_id: Column, filter_column: Column
    ) -> Column:
        """Flagging mappings to drop for each association.

        Some associations have multiple mappings. Some has matching rsId others don't. We only
        want to drop the non-matching mappings, when a matching is available for the given association.
        This logic can be generalised for other measures eg. allele concordance.

        Args:
            association_id (Column): association identifier column
            filter_column (Column): boolean col indicating to keep a mapping

        Returns:
            Column: A column with a boolean value.

        Examples:
        >>> d = [
        ...    (1, False),
        ...    (1, False),
        ...    (2, False),
        ...    (2, True),
        ...    (3, True),
        ...    (3, True),
        ... ]
        >>> df = spark.createDataFrame(d, ['associationId', 'filter'])
        >>> df.withColumn("isConcordant", GWASCatalogCuratedAssociationsParser._flag_mappings_to_retain(f.col("associationId"),f.col('filter'))).show()
        +-------------+------+------------+
        |associationId|filter|isConcordant|
        +-------------+------+------------+
        |            1| false|        true|
        |            1| false|        true|
        |            2| false|       false|
        |            2|  true|        true|
        |            3|  true|        true|
        |            3|  true|        true|
        +-------------+------+------------+
        <BLANKLINE>

        """
        w = Window.partitionBy(association_id)

        # Generating a boolean column informing if the filter column contains true anywhere for the association:
        aggregated_filter = f.when(
            f.array_contains(f.collect_set(filter_column).over(w), True), True
        ).otherwise(False)

        # Generate a filter column:
        return f.when(aggregated_filter & (~filter_column), False).otherwise(True)

    @staticmethod
    def _check_concordance(
        risk_allele: Column, reference_allele: Column, alternate_allele: Column
    ) -> Column:
        """A function to check if the risk allele is concordant with the alt or ref allele.

        If the risk allele is the same as the reference or alternate allele, or if the reverse complement of
        the risk allele is the same as the reference or alternate allele, then the allele is concordant.
        If no mapping is available (ref/alt is null), the function returns True.

        Args:
            risk_allele (Column): The allele that is associated with the risk of the disease.
            reference_allele (Column): The reference allele from the GWAS catalog
            alternate_allele (Column): The alternate allele of the variant.

        Returns:
            Column: A boolean column that is True if the risk allele is the same as the reference or alternate allele,
            or if the reverse complement of the risk allele is the same as the reference or alternate allele.

        Examples:
            >>> d = [
            ...     ('A', 'A', 'G'),
            ...     ('A', 'T', 'G'),
            ...     ('A', 'C', 'G'),
            ...     ('A', 'A', '?'),
            ...     (None, None, 'A'),
            ... ]
            >>> df = spark.createDataFrame(d, ['riskAllele', 'referenceAllele', 'alternateAllele'])
            >>> df.withColumn("isConcordant", GWASCatalogCuratedAssociationsParser._check_concordance(f.col("riskAllele"),f.col('referenceAllele'), f.col('alternateAllele'))).show()
            +----------+---------------+---------------+------------+
            |riskAllele|referenceAllele|alternateAllele|isConcordant|
            +----------+---------------+---------------+------------+
            |         A|              A|              G|        true|
            |         A|              T|              G|        true|
            |         A|              C|              G|       false|
            |         A|              A|              ?|        true|
            |      null|           null|              A|        true|
            +----------+---------------+---------------+------------+
            <BLANKLINE>

        """
        # Calculating the reverse complement of the risk allele:
        risk_allele_reverse_complement = f.when(
            risk_allele.rlike(r"^[ACTG]+$"),
            f.reverse(f.translate(risk_allele, "ACTG", "TGAC")),
        ).otherwise(risk_allele)

        # OK, is the risk allele or the reverse complent is the same as the mapped alleles:
        return (
            f.when(
                (risk_allele == reference_allele) | (risk_allele == alternate_allele),
                True,
            )
            # If risk allele is found on the negative strand:
            .when(
                (risk_allele_reverse_complement == reference_allele)
                | (risk_allele_reverse_complement == alternate_allele),
                True,
            )
            # If risk allele is ambiguous, still accepted: < This condition could be reconsidered
            .when(risk_allele == "?", True)
            # If the association could not be mapped we keep it:
            .when(reference_allele.isNull(), True)
            # Allele is discordant:
            .otherwise(False)
        )

    @staticmethod
    def _get_reverse_complement(allele_col: Column) -> Column:
        """A function to return the reverse complement of an allele column.

        It takes a string and returns the reverse complement of that string if it's a DNA sequence,
        otherwise it returns the original string. Assumes alleles in upper case.

        Args:
            allele_col (Column): The column containing the allele to reverse complement.

        Returns:
            Column: A column that is the reverse complement of the allele column.

        Examples:
            >>> d = [{"allele": 'A'}, {"allele": 'T'},{"allele": 'G'}, {"allele": 'C'},{"allele": 'AC'}, {"allele": 'GTaatc'},{"allele": '?'}, {"allele": None}]
            >>> df = spark.createDataFrame(d)
            >>> df.withColumn("revcom_allele", GWASCatalogCuratedAssociationsParser._get_reverse_complement(f.col("allele"))).show()
            +------+-------------+
            |allele|revcom_allele|
            +------+-------------+
            |     A|            T|
            |     T|            A|
            |     G|            C|
            |     C|            G|
            |    AC|           GT|
            |GTaatc|       GATTAC|
            |     ?|            ?|
            |  null|         null|
            +------+-------------+
            <BLANKLINE>

        """
        allele_col = f.upper(allele_col)
        return f.when(
            allele_col.rlike("[ACTG]+"),
            f.reverse(f.translate(allele_col, "ACTG", "TGAC")),
        ).otherwise(allele_col)

    @staticmethod
    def _effect_needs_harmonisation(
        risk_allele: Column, reference_allele: Column
    ) -> Column:
        """A function to check if the effect allele needs to be harmonised.

        Args:
            risk_allele (Column): Risk allele column
            reference_allele (Column): Effect allele column

        Returns:
            Column: A boolean column indicating if the effect allele needs to be harmonised.

        Examples:
            >>> d = [{"risk": 'A', "reference": 'A'}, {"risk": 'A', "reference": 'T'}, {"risk": 'AT', "reference": 'TA'}, {"risk": 'AT', "reference": 'AT'}]
            >>> df = spark.createDataFrame(d)
            >>> df.withColumn("needs_harmonisation", GWASCatalogCuratedAssociationsParser._effect_needs_harmonisation(f.col("risk"), f.col("reference"))).show()
            +---------+----+-------------------+
            |reference|risk|needs_harmonisation|
            +---------+----+-------------------+
            |        A|   A|               true|
            |        T|   A|               true|
            |       TA|  AT|              false|
            |       AT|  AT|               true|
            +---------+----+-------------------+
            <BLANKLINE>

        """
        return (risk_allele == reference_allele) | (
            risk_allele
            == GWASCatalogCuratedAssociationsParser._get_reverse_complement(
                reference_allele
            )
        )

    @staticmethod
    def _are_alleles_palindromic(
        reference_allele: Column, alternate_allele: Column
    ) -> Column:
        """A function to check if the alleles are palindromic.

        Args:
            reference_allele (Column): Reference allele column
            alternate_allele (Column): Alternate allele column

        Returns:
            Column: A boolean column indicating if the alleles are palindromic.

        Examples:
            >>> d = [{"reference": 'A', "alternate": 'T'}, {"reference": 'AT', "alternate": 'AG'}, {"reference": 'AT', "alternate": 'AT'}, {"reference": 'CATATG', "alternate": 'CATATG'}, {"reference": '-', "alternate": None}]
            >>> df = spark.createDataFrame(d)
            >>> df.withColumn("is_palindromic", GWASCatalogCuratedAssociationsParser._are_alleles_palindromic(f.col("reference"), f.col("alternate"))).show()
            +---------+---------+--------------+
            |alternate|reference|is_palindromic|
            +---------+---------+--------------+
            |        T|        A|          true|
            |       AG|       AT|         false|
            |       AT|       AT|          true|
            |   CATATG|   CATATG|          true|
            |     null|        -|         false|
            +---------+---------+--------------+
            <BLANKLINE>

        """
        revcomp = GWASCatalogCuratedAssociationsParser._get_reverse_complement(
            alternate_allele
        )
        return (
            f.when(reference_allele == revcomp, True)
            .when(revcomp.isNull(), False)
            .otherwise(False)
        )

    @staticmethod
    def _harmonise_beta(
        effect_size: Column,
        confidence_interval: Column,
        flipping_needed: Column,
    ) -> Column:
        """A function to extract the beta value from the effect size and confidence interval and harmonises for the alternate allele.

        If the confidence interval contains the word "increase" or "decrease" it indicates, we are dealing with betas.
        If it's "increase" and the effect size needs to be harmonized, then multiply the effect size by -1.
        The sign of the effect size is flipped if the confidence interval contains "decrease".

        eg. if the reported value is 0.5, and the confidence interval tells "decrease"? -> beta is -0.5

        Args:
            effect_size (Column): GWAS Catalog effect size column.
            confidence_interval (Column): GWAS Catalog confidence interval column to know the direction of the effect.
            flipping_needed (Column): Boolean flag indicating if effect needs to be flipped based on the alleles.

        Returns:
            Column: A column containing the beta value.

        Examples:
            >>> d = [
            ...    # positive effect -no flipping:
            ...    (0.5, 'increase', False),
            ...    # Positive effect - flip:
            ...    (0.5, 'decrease', False),
            ...    # Positive effect - flip:
            ...    (0.5, 'decrease', True),
            ...    # Negative effect - no flip:
            ...    (0.5, 'increase', True),
            ...    # Negative effect - flip:
            ...    (0.5, 'decrease', False),
            ... ]
            >>> (
            ...    spark.createDataFrame(d, ['effect', 'ci_text', 'flip'])
            ...    .select("effect", "ci_text", 'flip', GWASCatalogCuratedAssociationsParser._harmonise_beta(f.col("effect"), f.col("ci_text"), f.lit(False)).alias("beta"))
            ...    .show()
            ... )
            +------+--------+-----+----+
            |effect| ci_text| flip|beta|
            +------+--------+-----+----+
            |   0.5|increase|false| 0.5|
            |   0.5|decrease|false|-0.5|
            |   0.5|decrease| true|-0.5|
            |   0.5|increase| true| 0.5|
            |   0.5|decrease|false|-0.5|
            +------+--------+-----+----+
            <BLANKLINE>
        """
        return (
            f.when(
                (flipping_needed & confidence_interval.contains("increase"))
                | (~flipping_needed & confidence_interval.contains("decrease")),
                -effect_size,
            )
            .otherwise(effect_size)
            .cast(DoubleType())
        )

    @staticmethod
    def _harmonise_odds_ratio(
        effect_size: Column,
        flipping_needed: Column,
    ) -> Column:
        """Odds ratio is either propagated as is, or flipped if indicated, meaning returning a reciprocal value.

        Args:
            effect_size (Column): containing effect size,
            flipping_needed (Column): Boolean flag indicating if effect needs to be flipped

        Returns:
            Column: A column with the odds ratio, or 1/odds_ratio if harmonization required.

        Examples:
        >>> d = [(0.5, False), (0.5, True), (0.0, False), (0.0, True)]
        >>> (
        ...    spark.createDataFrame(d, ['effect', 'flip'])
        ...    .select("effect", "flip", GWASCatalogCuratedAssociationsParser._harmonise_odds_ratio(f.col("effect"), f.col("flip")).alias("odds_ratio"))
        ...    .show()
        ... )
        +------+-----+----------+
        |effect| flip|odds_ratio|
        +------+-----+----------+
        |   0.5|false|       0.5|
        |   0.5| true|       2.0|
        |   0.0|false|       0.0|
        |   0.0| true|      null|
        +------+-----+----------+
        <BLANKLINE>
        """
        return (
            # We are not flipping zero effect size:
            f.when((effect_size.cast(DoubleType()) == 0) & flipping_needed, f.lit(None))
            .when(
                flipping_needed,
                1 / effect_size,
            )
            .otherwise(effect_size)
            .cast(DoubleType())
        )

    @staticmethod
    def _concatenate_substudy_description(
        association_trait: Column, pvalue_text: Column, mapped_trait_uri: Column
    ) -> Column:
        """Substudy description parsing. Complex string containing metadata about the substudy (e.g. QTL, specific EFO, etc.).

        Args:
            association_trait (Column): GWAS Catalog association trait column
            pvalue_text (Column): GWAS Catalog p-value text column
            mapped_trait_uri (Column): GWAS Catalog mapped trait URI column

        Returns:
            Column: A column with the substudy description in the shape trait|pvaluetext1_pvaluetext2|EFO1_EFO2.

        Examples:
        >>> df = spark.createDataFrame([
        ...    ("Height", "http://www.ebi.ac.uk/efo/EFO_0000001,http://www.ebi.ac.uk/efo/EFO_0000002", "European Ancestry"),
        ...    ("Schizophrenia", "http://www.ebi.ac.uk/efo/MONDO_0005090", None)],
        ...    ["association_trait", "mapped_trait_uri", "pvalue_text"]
        ... )
        >>> df.withColumn('substudy_description', GWASCatalogCuratedAssociationsParser._concatenate_substudy_description(df.association_trait, df.pvalue_text, df.mapped_trait_uri)).show(truncate=False)
        +-----------------+-------------------------------------------------------------------------+-----------------+------------------------------------------+
        |association_trait|mapped_trait_uri                                                         |pvalue_text      |substudy_description                      |
        +-----------------+-------------------------------------------------------------------------+-----------------+------------------------------------------+
        |Height           |http://www.ebi.ac.uk/efo/EFO_0000001,http://www.ebi.ac.uk/efo/EFO_0000002|European Ancestry|Height|EA|EFO_0000001/EFO_0000002         |
        |Schizophrenia    |http://www.ebi.ac.uk/efo/MONDO_0005090                                   |null             |Schizophrenia|no_pvalue_text|MONDO_0005090|
        +-----------------+-------------------------------------------------------------------------+-----------------+------------------------------------------+
        <BLANKLINE>
        """
        p_value_text = f.coalesce(
            GWASCatalogCuratedAssociationsParser._normalise_pvaluetext(pvalue_text),
            f.array(f.lit("no_pvalue_text")),
        )
        return f.concat_ws(
            "|",
            association_trait,
            f.concat_ws(
                "/",
                p_value_text,
            ),
            f.concat_ws(
                "/",
                parse_efos(mapped_trait_uri),
            ),
        )

    @staticmethod
    def _qc_all(
        qc: Column,
        chromosome: Column,
        position: Column,
        reference_allele: Column,
        alternate_allele: Column,
        strongest_snp_risk_allele: Column,
        p_value_mantissa: Column,
        p_value_exponent: Column,
        p_value_cutoff: float,
    ) -> Column:
        """Flag associations that fail any QC.

        Args:
            qc (Column): QC column
            chromosome (Column): Chromosome column
            position (Column): Position column
            reference_allele (Column): Reference allele column
            alternate_allele (Column): Alternate allele column
            strongest_snp_risk_allele (Column): Strongest SNP risk allele column
            p_value_mantissa (Column): P-value mantissa column
            p_value_exponent (Column): P-value exponent column
            p_value_cutoff (float): P-value cutoff

        Returns:
            Column: Updated QC column with flag.
        """
        qc = GWASCatalogCuratedAssociationsParser._qc_variant_interactions(
            qc, strongest_snp_risk_allele
        )
        qc = StudyLocus._qc_subsignificant_associations(
            qc, p_value_mantissa, p_value_exponent, p_value_cutoff
        )
        qc = GWASCatalogCuratedAssociationsParser._qc_genomic_location(
            qc, chromosome, position
        )
        qc = GWASCatalogCuratedAssociationsParser._qc_variant_inconsistencies(
            qc, chromosome, position, strongest_snp_risk_allele
        )
        qc = GWASCatalogCuratedAssociationsParser._qc_unmapped_variants(
            qc, alternate_allele
        )
        qc = GWASCatalogCuratedAssociationsParser._qc_palindromic_alleles(
            qc, reference_allele, alternate_allele
        )
        return qc

    @staticmethod
    def _qc_variant_interactions(
        qc: Column, strongest_snp_risk_allele: Column
    ) -> Column:
        """Flag associations based on variant x variant interactions.

        Args:
            qc (Column): QC column
            strongest_snp_risk_allele (Column): Column with the strongest SNP risk allele

        Returns:
            Column: Updated QC column with flag.
        """
        return StudyLocus.update_quality_flag(
            qc,
            strongest_snp_risk_allele.contains(";"),
            StudyLocusQualityCheck.COMPOSITE_FLAG,
        )

    @staticmethod
    def _qc_genomic_location(
        qc: Column, chromosome: Column, position: Column
    ) -> Column:
        """Flag associations without genomic location in GWAS Catalog.

        Args:
            qc (Column): QC column
            chromosome (Column): Chromosome column in GWAS Catalog
            position (Column): Position column in GWAS Catalog

        Returns:
            Column: Updated QC column with flag.

        Examples:
            >>> import pyspark.sql.types as t
            >>> d = [{'qc': None, 'chromosome': None, 'position': None}, {'qc': None, 'chromosome': '1', 'position': None}, {'qc': None, 'chromosome': None, 'position': 1}, {'qc': None, 'chromosome': '1', 'position': 1}]
            >>> df = spark.createDataFrame(d, schema=t.StructType([t.StructField('qc', t.ArrayType(t.StringType()), True), t.StructField('chromosome', t.StringType()), t.StructField('position', t.IntegerType())]))
            >>> df.withColumn('qc', GWASCatalogCuratedAssociationsParser._qc_genomic_location(df.qc, df.chromosome, df.position)).show(truncate=False)
            +----------------------------+----------+--------+
            |qc                          |chromosome|position|
            +----------------------------+----------+--------+
            |[Incomplete genomic mapping]|null      |null    |
            |[Incomplete genomic mapping]|1         |null    |
            |[Incomplete genomic mapping]|null      |1       |
            |[]                          |1         |1       |
            +----------------------------+----------+--------+
            <BLANKLINE>

        """
        return StudyLocus.update_quality_flag(
            qc,
            position.isNull() | chromosome.isNull(),
            StudyLocusQualityCheck.NO_GENOMIC_LOCATION_FLAG,
        )

    @staticmethod
    def _qc_variant_inconsistencies(
        qc: Column,
        chromosome: Column,
        position: Column,
        strongest_snp_risk_allele: Column,
    ) -> Column:
        """Flag associations with inconsistencies in the variant annotation.

        Args:
            qc (Column): QC column
            chromosome (Column): Chromosome column in GWAS Catalog
            position (Column): Position column in GWAS Catalog
            strongest_snp_risk_allele (Column): Strongest SNP risk allele column in GWAS Catalog

        Returns:
            Column: Updated QC column with flag.
        """
        return StudyLocus.update_quality_flag(
            qc,
            # Number of chromosomes does not correspond to the number of positions:
            (f.size(f.split(chromosome, ";")) != f.size(f.split(position, ";")))
            # Number of chromosome values different from riskAllele values:
            | (
                f.size(f.split(chromosome, ";"))
                != f.size(f.split(strongest_snp_risk_allele, ";"))
            ),
            StudyLocusQualityCheck.INCONSISTENCY_FLAG,
        )

    @staticmethod
    def _qc_unmapped_variants(qc: Column, alternate_allele: Column) -> Column:
        """Flag associations with variants not mapped to variantAnnotation.

        Args:
            qc (Column): QC column
            alternate_allele (Column): alternate allele

        Returns:
            Column: Updated QC column with flag.

        Example:
            >>> import pyspark.sql.types as t
            >>> d = [{'alternate_allele': 'A', 'qc': None}, {'alternate_allele': None, 'qc': None}]
            >>> schema = t.StructType([t.StructField('alternate_allele', t.StringType(), True), t.StructField('qc', t.ArrayType(t.StringType()), True)])
            >>> df = spark.createDataFrame(data=d, schema=schema)
            >>> df.withColumn("new_qc", GWASCatalogCuratedAssociationsParser._qc_unmapped_variants(f.col("qc"), f.col("alternate_allele"))).show()
            +----------------+----+--------------------+
            |alternate_allele|  qc|              new_qc|
            +----------------+----+--------------------+
            |               A|null|                  []|
            |            null|null|[No mapping in Gn...|
            +----------------+----+--------------------+
            <BLANKLINE>

        """
        return StudyLocus.update_quality_flag(
            qc,
            alternate_allele.isNull(),
            StudyLocusQualityCheck.NON_MAPPED_VARIANT_FLAG,
        )

    @staticmethod
    def _qc_palindromic_alleles(
        qc: Column, reference_allele: Column, alternate_allele: Column
    ) -> Column:
        """Flag associations with palindromic variants which effects can not be harmonised.

        Args:
            qc (Column): QC column
            reference_allele (Column): reference allele
            alternate_allele (Column): alternate allele

        Returns:
            Column: Updated QC column with flag.

        Example:
            >>> import pyspark.sql.types as t
            >>> schema = t.StructType([t.StructField('reference_allele', t.StringType(), True), t.StructField('alternate_allele', t.StringType(), True), t.StructField('qc', t.ArrayType(t.StringType()), True)])
            >>> d = [{'reference_allele': 'A', 'alternate_allele': 'T', 'qc': None}, {'reference_allele': 'AT', 'alternate_allele': 'TA', 'qc': None}, {'reference_allele': 'AT', 'alternate_allele': 'AT', 'qc': None}]
            >>> df = spark.createDataFrame(data=d, schema=schema)
            >>> df.withColumn("qc", GWASCatalogCuratedAssociationsParser._qc_palindromic_alleles(f.col("qc"), f.col("reference_allele"), f.col("alternate_allele"))).show(truncate=False)
            +----------------+----------------+---------------------------------------+
            |reference_allele|alternate_allele|qc                                     |
            +----------------+----------------+---------------------------------------+
            |A               |T               |[Palindrome alleles - cannot harmonize]|
            |AT              |TA              |[]                                     |
            |AT              |AT              |[Palindrome alleles - cannot harmonize]|
            +----------------+----------------+---------------------------------------+
            <BLANKLINE>

        """
        return StudyLocus.update_quality_flag(
            qc,
            GWASCatalogCuratedAssociationsParser._are_alleles_palindromic(
                reference_allele, alternate_allele
            ),
            StudyLocusQualityCheck.PALINDROMIC_ALLELE_FLAG,
        )

    @staticmethod
    def _get_effect_type(ci_text: Column) -> Column:
        """Extracts the effect type from the 95% CI text.

        The GWAS Catalog confidence interval column contains text that can be used to infer the effect type.
        If the text contains "increase" or "decrease", the effect type is beta, otherwise it is odds ratio.
        Null columns return null as the effect type.

        Args:
            ci_text (Column): Column containing the 95% CI text.

        Returns:
            Column: A column containing the effect type.

        Examples:
            >>> data = [{"ci_text": "95% CI: [0.1-0.2]"}, {"ci_text": "95% CI: [0.1-0.2] increase"}, {"ci_text": "95% CI: [0.1-0.2] decrease"}, {"ci_text": None}]
            >>> spark.createDataFrame(data).select('ci_text', GWASCatalogCuratedAssociationsParser._get_effect_type(f.col('ci_text')).alias('effect_type')).show(truncate=False)
            +--------------------------+-----------+
            |ci_text                   |effect_type|
            +--------------------------+-----------+
            |95% CI: [0.1-0.2]         |odds_ratio |
            |95% CI: [0.1-0.2] increase|beta       |
            |95% CI: [0.1-0.2] decrease|beta       |
            |null                      |null       |
            +--------------------------+-----------+
            <BLANKLINE>

        """
        return f.when(
            f.lower(ci_text).contains("increase")
            | f.lower(ci_text).contains("decrease"),
            f.lit("beta"),
        ).when(ci_text.isNotNull(), f.lit("odds_ratio"))

    @staticmethod
    def harmonise_association_effect_to_beta(
        df: DataFrame,
    ) -> DataFrame:
        """Harmonise effect to beta value.

        The harmonisation process has a number of steps:
        - Extracting the reported effect allele.
        - Flagging palindromic alleles.
        - Flagging associations where the effect direction needs to be flipped.
        - Flagging the effect type.
        - Getting the standard error from the confidence interval text.
        - Harmonising both beta and odds ratio.
        - Converting the odds ratio to beta.

        Args:
            df (DataFrame): DataFrame with the following columns:

        Returns:
            DataFrame: DataFrame with the following columns:

        Raises:
            ValueError: If any of the required columns are missing.

        Examples:
            >>> data = [
            ...    # Flagged as palindromic:
            ...    ('rs123-T', 'A', 'T', '0.1', '[0.08-0.12] unit increase'),
            ...    # Not palindromic, beta needs to be flipped:
            ...    ('rs123-C', 'G', 'T', '0.1', '[0.08-0.12] unit increase'),
            ...    # Beta is not flipped:
            ...    ('rs123-T', 'C', 'T', '0.1', '[0.08-0.12] unit increase'),
            ...    # odds ratio:
            ...    ('rs123-T', 'C', 'T', '0.1', '[0.08-0.12]'),
            ...    # odds ratio flipped:
            ...    ('rs123-C', 'G', 'T', '0.1', '[0.08-0.12]'),
            ... ]
            >>> schema = ["STRONGEST SNP-RISK ALLELE", "referenceAllele", "alternateAllele", "OR or BETA", "95% CI (TEXT)"]
            >>> df = spark.createDataFrame(data, schema)
            >>> GWASCatalogCuratedAssociationsParser.harmonise_association_effect_to_beta(df).show()
            +-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
            |STRONGEST SNP-RISK ALLELE|referenceAllele|alternateAllele|OR or BETA|       95% CI (TEXT)|               beta|       standardError|
            +-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
            |                  rs123-T|              A|              T|       0.1|[0.08-0.12] unit ...|               null|                null|
            |                  rs123-C|              G|              T|       0.1|[0.08-0.12] unit ...|               -0.1|0.010204081404574064|
            |                  rs123-T|              C|              T|       0.1|[0.08-0.12] unit ...|                0.1|0.010204081404574064|
            |                  rs123-T|              C|              T|       0.1|         [0.08-0.12]|-2.3025850929940455|                null|
            |                  rs123-C|              G|              T|       0.1|         [0.08-0.12]|  2.302585092994046|                null|
            +-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
            <BLANKLINE>
        """
        # Testing if all columns are in the dataframe:
        required_columns = [
            "STRONGEST SNP-RISK ALLELE",
            "referenceAllele",
            "alternateAllele",
            "OR or BETA",
            "95% CI (TEXT)",
        ]

        for column in required_columns:
            if column not in df.columns:
                raise ValueError(
                    f"Column {column} is required for harmonising effect to beta value."
                )

        return (
            df.withColumn(
                "reportedRiskAllele",
                GWASCatalogCuratedAssociationsParser._extract_risk_allele(
                    f.col("STRONGEST SNP-RISK ALLELE")
                ),
            )
            .withColumns(
                {
                    # Flag palindromic alleles:
                    "isAllelePalindromic": GWASCatalogCuratedAssociationsParser._are_alleles_palindromic(
                        f.col("referenceAllele"), f.col("alternateAllele")
                    ),
                    # Flag associations, where the effect direction needs to be flipped:
                    "needsFlipping": GWASCatalogCuratedAssociationsParser._effect_needs_harmonisation(
                        f.col("reportedRiskAllele"), f.col("referenceAllele")
                    ),
                    # Flag effect type:
                    "effectType": GWASCatalogCuratedAssociationsParser._get_effect_type(
                        f.col("95% CI (TEXT)")
                    ),
                    # Get standard error from confidence interval text:
                    "standardError": get_standard_error_from_confidence_interval(
                        f.regexp_extract(
                            "95% CI (TEXT)", r"\[(\d+\.*\d*)-\d+\.*\d*\]", 1
                        ).cast(FloatType()),
                        f.regexp_extract(
                            "95% CI (TEXT)", r"\[\d+\.*\d*-(\d+\.*\d*)\]", 1
                        ).cast(FloatType()),
                    ),
                }
            )
            # Harmonise both beta and odds ratio:
            .withColumns(
                {  # Normalise beta value of the association:
                    "effect_beta": f.when(
                        (f.col("effectType") == "beta")
                        & (~f.col("isAllelePalindromic")),
                        GWASCatalogCuratedAssociationsParser._harmonise_beta(
                            f.col("OR or BETA"),
                            f.col("95% CI (TEXT)"),
                            f.col("needsFlipping"),
                        ),
                    ),
                    # Normalise odds ratio of the association:
                    "effect_odds_ratio": f.when(
                        (f.col("effectType") == "odds_ratio")
                        & (~f.col("isAllelePalindromic")),
                        GWASCatalogCuratedAssociationsParser._harmonise_odds_ratio(
                            f.col("OR or BETA"),
                            f.col("needsFlipping"),
                        ),
                    ),
                },
            )
            .select(
                *df.columns,
                # Harmonise OR effect to beta:
                *convert_odds_ratio_to_beta(
                    f.col("effect_beta"),
                    f.col("effect_odds_ratio"),
                    f.col("standardError"),
                ),
            )
        )

    @classmethod
    def from_source(
        cls: type[GWASCatalogCuratedAssociationsParser],
        gwas_associations: DataFrame,
        gnomad_variants: VariantIndex,
        pvalue_threshold: float = WindowBasedClumpingStepConfig.gwas_significance,
    ) -> StudyLocusGWASCatalog:
        """Read GWASCatalog associations.

        It reads the GWAS Catalog association dataset, selects and renames columns, casts columns, and
        applies some pre-defined filters on the data:

        Args:
            gwas_associations (DataFrame): GWAS Catalog raw associations dataset.
            gnomad_variants (VariantIndex): Variant dataset from GnomAD, with allele frequencies.
            pvalue_threshold (float): P-value threshold for flagging associations.

        Returns:
            StudyLocusGWASCatalog: GWASCatalogAssociations dataset

        pvalue_threshold is keeped in sync with the WindowBasedClumpingStep gwas_significance.
        """
        return StudyLocusGWASCatalog(
            _df=gwas_associations.withColumn(
                # temporary column
                "rowId", f.monotonically_increasing_id().cast(StringType())
            )
            .transform(
                # Map/harmonise variants to variant annotation dataset:
                # This function adds columns: variantId, referenceAllele, alternateAllele, chromosome, position
                lambda df: GWASCatalogCuratedAssociationsParser._map_variants_to_gnomad_variants(
                    df, gnomad_variants
                )
            )
            .withColumns(
                # Perform all quality control checks:
                {
                    "qualityControls": GWASCatalogCuratedAssociationsParser._qc_all(
                        f.array().alias("qualityControls"),
                        f.col("CHR_ID"),
                        f.col("CHR_POS").cast(IntegerType()),
                        f.col("referenceAllele"),
                        f.col("alternateAllele"),
                        f.col("STRONGEST SNP-RISK ALLELE"),
                        *GWASCatalogCuratedAssociationsParser._parse_pvalue(
                            f.col("P-VALUE")
                        ),
                        pvalue_threshold,
                    )
                }
            )
            # Harmonising effect to beta value and flip effect if needed:
            .transform(cls.harmonise_association_effect_to_beta)
            .withColumnRenamed("STUDY ACCESSION", "studyId")
            # Adding study-locus id:
            .withColumn(
                "studyLocusId",
                StudyLocus.assign_study_locus_id(
                    ["studyId", "variantId"]
                ),
            )
            .select(
                # INSIDE STUDY-LOCUS SCHEMA:
                "studyLocusId",
                "variantId",
                # Mapped genomic location of the variant (; separated list)
                "chromosome",
                "position",
                "studyId",
                # p-value of the association, string: split into exponent and mantissa.
                *GWASCatalogCuratedAssociationsParser._parse_pvalue(f.col("P-VALUE")),
                # Capturing phenotype granularity at the association level
                GWASCatalogCuratedAssociationsParser._concatenate_substudy_description(
                    f.col("DISEASE/TRAIT"),
                    f.col("P-VALUE (TEXT)"),
                    f.col("MAPPED_TRAIT_URI"),
                ).alias("subStudyDescription"),
                # Quality controls (array of strings)
                "qualityControls",
                "beta",
                "standardError",
            ),
            _schema=StudyLocusGWASCatalog.get_schema(),
        )

convert_gnomad_position_to_ensembl(position: Column, reference: Column, alternate: Column) -> Column staticmethod

Convert GnomAD variant position to Ensembl variant position.

For indels (the reference or alternate allele is longer than 1), then adding 1 to the position, for SNPs, the position is unchanged. More info about the problem: https://www.biostars.org/p/84686/

Parameters:

Name Type Description Default
position Column

Position of the variant in GnomAD's coordinates system.

required
reference Column

The reference allele in GnomAD's coordinates system.

required
alternate Column

The alternate allele in GnomAD's coordinates system.

required

Returns:

Name Type Description
Column Column

The position of the variant in the Ensembl genome.

Examples:

>>> d = [(1, "A", "C"), (2, "AA", "C"), (3, "A", "AA")]
>>> df = spark.createDataFrame(d).toDF("position", "reference", "alternate")
>>> df.withColumn("new_position", GWASCatalogCuratedAssociationsParser.convert_gnomad_position_to_ensembl(f.col("position"), f.col("reference"), f.col("alternate"))).show()
+--------+---------+---------+------------+
|position|reference|alternate|new_position|
+--------+---------+---------+------------+
|       1|        A|        C|           1|
|       2|       AA|        C|           3|
|       3|        A|       AA|           4|
+--------+---------+---------+------------+
Source code in src/gentropy/datasource/gwas_catalog/associations.py
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
@staticmethod
def convert_gnomad_position_to_ensembl(
    position: Column, reference: Column, alternate: Column
) -> Column:
    """Convert GnomAD variant position to Ensembl variant position.

    For indels (the reference or alternate allele is longer than 1), then adding 1 to the position, for SNPs,
    the position is unchanged. More info about the problem: https://www.biostars.org/p/84686/

    Args:
        position (Column): Position of the variant in GnomAD's coordinates system.
        reference (Column): The reference allele in GnomAD's coordinates system.
        alternate (Column): The alternate allele in GnomAD's coordinates system.

    Returns:
        Column: The position of the variant in the Ensembl genome.

    Examples:
        >>> d = [(1, "A", "C"), (2, "AA", "C"), (3, "A", "AA")]
        >>> df = spark.createDataFrame(d).toDF("position", "reference", "alternate")
        >>> df.withColumn("new_position", GWASCatalogCuratedAssociationsParser.convert_gnomad_position_to_ensembl(f.col("position"), f.col("reference"), f.col("alternate"))).show()
        +--------+---------+---------+------------+
        |position|reference|alternate|new_position|
        +--------+---------+---------+------------+
        |       1|        A|        C|           1|
        |       2|       AA|        C|           3|
        |       3|        A|       AA|           4|
        +--------+---------+---------+------------+
        <BLANKLINE>
    """
    return f.when(
        (f.length(reference) > 1) | (f.length(alternate) > 1), position + 1
    ).otherwise(position)

from_source(gwas_associations: DataFrame, gnomad_variants: VariantIndex, pvalue_threshold: float = WindowBasedClumpingStepConfig.gwas_significance) -> StudyLocusGWASCatalog classmethod

Read GWASCatalog associations.

It reads the GWAS Catalog association dataset, selects and renames columns, casts columns, and applies some pre-defined filters on the data:

Parameters:

Name Type Description Default
gwas_associations DataFrame

GWAS Catalog raw associations dataset.

required
gnomad_variants VariantIndex

Variant dataset from GnomAD, with allele frequencies.

required
pvalue_threshold float

P-value threshold for flagging associations.

gwas_significance

Returns:

Name Type Description
StudyLocusGWASCatalog StudyLocusGWASCatalog

GWASCatalogAssociations dataset

pvalue_threshold is keeped in sync with the WindowBasedClumpingStep gwas_significance.

Source code in src/gentropy/datasource/gwas_catalog/associations.py
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
@classmethod
def from_source(
    cls: type[GWASCatalogCuratedAssociationsParser],
    gwas_associations: DataFrame,
    gnomad_variants: VariantIndex,
    pvalue_threshold: float = WindowBasedClumpingStepConfig.gwas_significance,
) -> StudyLocusGWASCatalog:
    """Read GWASCatalog associations.

    It reads the GWAS Catalog association dataset, selects and renames columns, casts columns, and
    applies some pre-defined filters on the data:

    Args:
        gwas_associations (DataFrame): GWAS Catalog raw associations dataset.
        gnomad_variants (VariantIndex): Variant dataset from GnomAD, with allele frequencies.
        pvalue_threshold (float): P-value threshold for flagging associations.

    Returns:
        StudyLocusGWASCatalog: GWASCatalogAssociations dataset

    pvalue_threshold is keeped in sync with the WindowBasedClumpingStep gwas_significance.
    """
    return StudyLocusGWASCatalog(
        _df=gwas_associations.withColumn(
            # temporary column
            "rowId", f.monotonically_increasing_id().cast(StringType())
        )
        .transform(
            # Map/harmonise variants to variant annotation dataset:
            # This function adds columns: variantId, referenceAllele, alternateAllele, chromosome, position
            lambda df: GWASCatalogCuratedAssociationsParser._map_variants_to_gnomad_variants(
                df, gnomad_variants
            )
        )
        .withColumns(
            # Perform all quality control checks:
            {
                "qualityControls": GWASCatalogCuratedAssociationsParser._qc_all(
                    f.array().alias("qualityControls"),
                    f.col("CHR_ID"),
                    f.col("CHR_POS").cast(IntegerType()),
                    f.col("referenceAllele"),
                    f.col("alternateAllele"),
                    f.col("STRONGEST SNP-RISK ALLELE"),
                    *GWASCatalogCuratedAssociationsParser._parse_pvalue(
                        f.col("P-VALUE")
                    ),
                    pvalue_threshold,
                )
            }
        )
        # Harmonising effect to beta value and flip effect if needed:
        .transform(cls.harmonise_association_effect_to_beta)
        .withColumnRenamed("STUDY ACCESSION", "studyId")
        # Adding study-locus id:
        .withColumn(
            "studyLocusId",
            StudyLocus.assign_study_locus_id(
                ["studyId", "variantId"]
            ),
        )
        .select(
            # INSIDE STUDY-LOCUS SCHEMA:
            "studyLocusId",
            "variantId",
            # Mapped genomic location of the variant (; separated list)
            "chromosome",
            "position",
            "studyId",
            # p-value of the association, string: split into exponent and mantissa.
            *GWASCatalogCuratedAssociationsParser._parse_pvalue(f.col("P-VALUE")),
            # Capturing phenotype granularity at the association level
            GWASCatalogCuratedAssociationsParser._concatenate_substudy_description(
                f.col("DISEASE/TRAIT"),
                f.col("P-VALUE (TEXT)"),
                f.col("MAPPED_TRAIT_URI"),
            ).alias("subStudyDescription"),
            # Quality controls (array of strings)
            "qualityControls",
            "beta",
            "standardError",
        ),
        _schema=StudyLocusGWASCatalog.get_schema(),
    )

harmonise_association_effect_to_beta(df: DataFrame) -> DataFrame staticmethod

Harmonise effect to beta value.

The harmonisation process has a number of steps: - Extracting the reported effect allele. - Flagging palindromic alleles. - Flagging associations where the effect direction needs to be flipped. - Flagging the effect type. - Getting the standard error from the confidence interval text. - Harmonising both beta and odds ratio. - Converting the odds ratio to beta.

Parameters:

Name Type Description Default
df DataFrame

DataFrame with the following columns:

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame with the following columns:

Raises:

Type Description
ValueError

If any of the required columns are missing.

Examples:

>>> data = [
...    # Flagged as palindromic:
...    ('rs123-T', 'A', 'T', '0.1', '[0.08-0.12] unit increase'),
...    # Not palindromic, beta needs to be flipped:
...    ('rs123-C', 'G', 'T', '0.1', '[0.08-0.12] unit increase'),
...    # Beta is not flipped:
...    ('rs123-T', 'C', 'T', '0.1', '[0.08-0.12] unit increase'),
...    # odds ratio:
...    ('rs123-T', 'C', 'T', '0.1', '[0.08-0.12]'),
...    # odds ratio flipped:
...    ('rs123-C', 'G', 'T', '0.1', '[0.08-0.12]'),
... ]
>>> schema = ["STRONGEST SNP-RISK ALLELE", "referenceAllele", "alternateAllele", "OR or BETA", "95% CI (TEXT)"]
>>> df = spark.createDataFrame(data, schema)
>>> GWASCatalogCuratedAssociationsParser.harmonise_association_effect_to_beta(df).show()
+-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
|STRONGEST SNP-RISK ALLELE|referenceAllele|alternateAllele|OR or BETA|       95% CI (TEXT)|               beta|       standardError|
+-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
|                  rs123-T|              A|              T|       0.1|[0.08-0.12] unit ...|               null|                null|
|                  rs123-C|              G|              T|       0.1|[0.08-0.12] unit ...|               -0.1|0.010204081404574064|
|                  rs123-T|              C|              T|       0.1|[0.08-0.12] unit ...|                0.1|0.010204081404574064|
|                  rs123-T|              C|              T|       0.1|         [0.08-0.12]|-2.3025850929940455|                null|
|                  rs123-C|              G|              T|       0.1|         [0.08-0.12]|  2.302585092994046|                null|
+-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
Source code in src/gentropy/datasource/gwas_catalog/associations.py
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
@staticmethod
def harmonise_association_effect_to_beta(
    df: DataFrame,
) -> DataFrame:
    """Harmonise effect to beta value.

    The harmonisation process has a number of steps:
    - Extracting the reported effect allele.
    - Flagging palindromic alleles.
    - Flagging associations where the effect direction needs to be flipped.
    - Flagging the effect type.
    - Getting the standard error from the confidence interval text.
    - Harmonising both beta and odds ratio.
    - Converting the odds ratio to beta.

    Args:
        df (DataFrame): DataFrame with the following columns:

    Returns:
        DataFrame: DataFrame with the following columns:

    Raises:
        ValueError: If any of the required columns are missing.

    Examples:
        >>> data = [
        ...    # Flagged as palindromic:
        ...    ('rs123-T', 'A', 'T', '0.1', '[0.08-0.12] unit increase'),
        ...    # Not palindromic, beta needs to be flipped:
        ...    ('rs123-C', 'G', 'T', '0.1', '[0.08-0.12] unit increase'),
        ...    # Beta is not flipped:
        ...    ('rs123-T', 'C', 'T', '0.1', '[0.08-0.12] unit increase'),
        ...    # odds ratio:
        ...    ('rs123-T', 'C', 'T', '0.1', '[0.08-0.12]'),
        ...    # odds ratio flipped:
        ...    ('rs123-C', 'G', 'T', '0.1', '[0.08-0.12]'),
        ... ]
        >>> schema = ["STRONGEST SNP-RISK ALLELE", "referenceAllele", "alternateAllele", "OR or BETA", "95% CI (TEXT)"]
        >>> df = spark.createDataFrame(data, schema)
        >>> GWASCatalogCuratedAssociationsParser.harmonise_association_effect_to_beta(df).show()
        +-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
        |STRONGEST SNP-RISK ALLELE|referenceAllele|alternateAllele|OR or BETA|       95% CI (TEXT)|               beta|       standardError|
        +-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
        |                  rs123-T|              A|              T|       0.1|[0.08-0.12] unit ...|               null|                null|
        |                  rs123-C|              G|              T|       0.1|[0.08-0.12] unit ...|               -0.1|0.010204081404574064|
        |                  rs123-T|              C|              T|       0.1|[0.08-0.12] unit ...|                0.1|0.010204081404574064|
        |                  rs123-T|              C|              T|       0.1|         [0.08-0.12]|-2.3025850929940455|                null|
        |                  rs123-C|              G|              T|       0.1|         [0.08-0.12]|  2.302585092994046|                null|
        +-------------------------+---------------+---------------+----------+--------------------+-------------------+--------------------+
        <BLANKLINE>
    """
    # Testing if all columns are in the dataframe:
    required_columns = [
        "STRONGEST SNP-RISK ALLELE",
        "referenceAllele",
        "alternateAllele",
        "OR or BETA",
        "95% CI (TEXT)",
    ]

    for column in required_columns:
        if column not in df.columns:
            raise ValueError(
                f"Column {column} is required for harmonising effect to beta value."
            )

    return (
        df.withColumn(
            "reportedRiskAllele",
            GWASCatalogCuratedAssociationsParser._extract_risk_allele(
                f.col("STRONGEST SNP-RISK ALLELE")
            ),
        )
        .withColumns(
            {
                # Flag palindromic alleles:
                "isAllelePalindromic": GWASCatalogCuratedAssociationsParser._are_alleles_palindromic(
                    f.col("referenceAllele"), f.col("alternateAllele")
                ),
                # Flag associations, where the effect direction needs to be flipped:
                "needsFlipping": GWASCatalogCuratedAssociationsParser._effect_needs_harmonisation(
                    f.col("reportedRiskAllele"), f.col("referenceAllele")
                ),
                # Flag effect type:
                "effectType": GWASCatalogCuratedAssociationsParser._get_effect_type(
                    f.col("95% CI (TEXT)")
                ),
                # Get standard error from confidence interval text:
                "standardError": get_standard_error_from_confidence_interval(
                    f.regexp_extract(
                        "95% CI (TEXT)", r"\[(\d+\.*\d*)-\d+\.*\d*\]", 1
                    ).cast(FloatType()),
                    f.regexp_extract(
                        "95% CI (TEXT)", r"\[\d+\.*\d*-(\d+\.*\d*)\]", 1
                    ).cast(FloatType()),
                ),
            }
        )
        # Harmonise both beta and odds ratio:
        .withColumns(
            {  # Normalise beta value of the association:
                "effect_beta": f.when(
                    (f.col("effectType") == "beta")
                    & (~f.col("isAllelePalindromic")),
                    GWASCatalogCuratedAssociationsParser._harmonise_beta(
                        f.col("OR or BETA"),
                        f.col("95% CI (TEXT)"),
                        f.col("needsFlipping"),
                    ),
                ),
                # Normalise odds ratio of the association:
                "effect_odds_ratio": f.when(
                    (f.col("effectType") == "odds_ratio")
                    & (~f.col("isAllelePalindromic")),
                    GWASCatalogCuratedAssociationsParser._harmonise_odds_ratio(
                        f.col("OR or BETA"),
                        f.col("needsFlipping"),
                    ),
                ),
            },
        )
        .select(
            *df.columns,
            # Harmonise OR effect to beta:
            *convert_odds_ratio_to_beta(
                f.col("effect_beta"),
                f.col("effect_odds_ratio"),
                f.col("standardError"),
            ),
        )
    )

gentropy.datasource.gwas_catalog.associations.StudyLocusGWASCatalog dataclass

Bases: StudyLocus

Study locus Dataset for GWAS Catalog curated associations.

A study index dataset captures all the metadata for all studies including GWAS and Molecular QTL.

Source code in src/gentropy/datasource/gwas_catalog/associations.py
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
@dataclass
class StudyLocusGWASCatalog(StudyLocus):
    """Study locus Dataset for GWAS Catalog curated associations.

    A study index dataset captures all the metadata for all studies including GWAS and Molecular QTL.
    """

    def update_study_id(
        self: StudyLocusGWASCatalog, study_annotation: DataFrame
    ) -> StudyLocusGWASCatalog:
        """Update final studyId and studyLocusId with a dataframe containing study annotation.

        Args:
            study_annotation (DataFrame): Dataframe containing `updatedStudyId` and key columns `studyId` and `subStudyDescription`.

        Returns:
            StudyLocusGWASCatalog: Updated study locus with new `studyId` and `studyLocusId`.
        """
        self.df = (
            self._df.join(
                study_annotation, on=["studyId", "subStudyDescription"], how="left"
            )
            .withColumn("studyId", f.coalesce("updatedStudyId", "studyId"))
            .drop("subStudyDescription", "updatedStudyId")
        ).withColumn(
            "studyLocusId",
            StudyLocus.assign_study_locus_id(["studyId", "variantId"]),
        )
        return self

    def qc_ambiguous_study(self: StudyLocusGWASCatalog) -> StudyLocusGWASCatalog:
        """Flag associations with variants that can not be unambiguously associated with one study.

        Returns:
            StudyLocusGWASCatalog: Updated study locus.
        """
        assoc_ambiguity_window = Window.partitionBy(
            f.col("studyId"), f.col("variantId")
        )

        self._df.withColumn(
            "qualityControls",
            StudyLocus.update_quality_flag(
                f.col("qualityControls"),
                f.count(f.col("variantId")).over(assoc_ambiguity_window) > 1,
                StudyLocusQualityCheck.AMBIGUOUS_STUDY,
            ),
        )
        return self

    def qc_flag_all_tophits(self: StudyLocusGWASCatalog) -> StudyLocusGWASCatalog:
        """Flag all associations as top hits.

        Returns:
            StudyLocusGWASCatalog: Updated study locus.
        """
        return StudyLocusGWASCatalog(
            _df=self._df.withColumn(
                "qualityControls",
                StudyLocus.update_quality_flag(
                    f.col("qualityControls"),
                    f.lit(True),
                    StudyLocusQualityCheck.TOP_HIT,
                ),
            ),
            _schema=StudyLocusGWASCatalog.get_schema(),
        )

    def apply_inclusion_list(
        self: StudyLocusGWASCatalog, inclusion_list: DataFrame
    ) -> StudyLocusGWASCatalog:
        """Restricting GWAS Catalog studies based on a list of accpected study ids.

        Args:
            inclusion_list (DataFrame): List of accepted GWAS Catalog study identifiers

        Returns:
            StudyLocusGWASCatalog: Filtered dataset.
        """
        return StudyLocusGWASCatalog(
            _df=self.df.join(inclusion_list, on="studyId", how="inner"),
            _schema=StudyLocusGWASCatalog.get_schema(),
        )

apply_inclusion_list(inclusion_list: DataFrame) -> StudyLocusGWASCatalog

Restricting GWAS Catalog studies based on a list of accpected study ids.

Parameters:

Name Type Description Default
inclusion_list DataFrame

List of accepted GWAS Catalog study identifiers

required

Returns:

Name Type Description
StudyLocusGWASCatalog StudyLocusGWASCatalog

Filtered dataset.

Source code in src/gentropy/datasource/gwas_catalog/associations.py
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
def apply_inclusion_list(
    self: StudyLocusGWASCatalog, inclusion_list: DataFrame
) -> StudyLocusGWASCatalog:
    """Restricting GWAS Catalog studies based on a list of accpected study ids.

    Args:
        inclusion_list (DataFrame): List of accepted GWAS Catalog study identifiers

    Returns:
        StudyLocusGWASCatalog: Filtered dataset.
    """
    return StudyLocusGWASCatalog(
        _df=self.df.join(inclusion_list, on="studyId", how="inner"),
        _schema=StudyLocusGWASCatalog.get_schema(),
    )

qc_ambiguous_study() -> StudyLocusGWASCatalog

Flag associations with variants that can not be unambiguously associated with one study.

Returns:

Name Type Description
StudyLocusGWASCatalog StudyLocusGWASCatalog

Updated study locus.

Source code in src/gentropy/datasource/gwas_catalog/associations.py
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
def qc_ambiguous_study(self: StudyLocusGWASCatalog) -> StudyLocusGWASCatalog:
    """Flag associations with variants that can not be unambiguously associated with one study.

    Returns:
        StudyLocusGWASCatalog: Updated study locus.
    """
    assoc_ambiguity_window = Window.partitionBy(
        f.col("studyId"), f.col("variantId")
    )

    self._df.withColumn(
        "qualityControls",
        StudyLocus.update_quality_flag(
            f.col("qualityControls"),
            f.count(f.col("variantId")).over(assoc_ambiguity_window) > 1,
            StudyLocusQualityCheck.AMBIGUOUS_STUDY,
        ),
    )
    return self

qc_flag_all_tophits() -> StudyLocusGWASCatalog

Flag all associations as top hits.

Returns:

Name Type Description
StudyLocusGWASCatalog StudyLocusGWASCatalog

Updated study locus.

Source code in src/gentropy/datasource/gwas_catalog/associations.py
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
def qc_flag_all_tophits(self: StudyLocusGWASCatalog) -> StudyLocusGWASCatalog:
    """Flag all associations as top hits.

    Returns:
        StudyLocusGWASCatalog: Updated study locus.
    """
    return StudyLocusGWASCatalog(
        _df=self._df.withColumn(
            "qualityControls",
            StudyLocus.update_quality_flag(
                f.col("qualityControls"),
                f.lit(True),
                StudyLocusQualityCheck.TOP_HIT,
            ),
        ),
        _schema=StudyLocusGWASCatalog.get_schema(),
    )

update_study_id(study_annotation: DataFrame) -> StudyLocusGWASCatalog

Update final studyId and studyLocusId with a dataframe containing study annotation.

Parameters:

Name Type Description Default
study_annotation DataFrame

Dataframe containing updatedStudyId and key columns studyId and subStudyDescription.

required

Returns:

Name Type Description
StudyLocusGWASCatalog StudyLocusGWASCatalog

Updated study locus with new studyId and studyLocusId.

Source code in src/gentropy/datasource/gwas_catalog/associations.py
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
def update_study_id(
    self: StudyLocusGWASCatalog, study_annotation: DataFrame
) -> StudyLocusGWASCatalog:
    """Update final studyId and studyLocusId with a dataframe containing study annotation.

    Args:
        study_annotation (DataFrame): Dataframe containing `updatedStudyId` and key columns `studyId` and `subStudyDescription`.

    Returns:
        StudyLocusGWASCatalog: Updated study locus with new `studyId` and `studyLocusId`.
    """
    self.df = (
        self._df.join(
            study_annotation, on=["studyId", "subStudyDescription"], how="left"
        )
        .withColumn("studyId", f.coalesce("updatedStudyId", "studyId"))
        .drop("subStudyDescription", "updatedStudyId")
    ).withColumn(
        "studyLocusId",
        StudyLocus.assign_study_locus_id(["studyId", "variantId"]),
    )
    return self