Skip to content

Study Index

gentropy.datasource.gwas_catalog.study_index.StudyIndexGWASCatalogParser dataclass

GWAS Catalog study index parser.

The following information is harmonised from the GWAS Catalog:

  • All publication related information retained.
  • Mapped measured and background traits parsed.
  • Flagged if harmonized summary statistics datasets available.
  • If available, the ftp path to these files presented.
  • Ancestries from the discovery and replication stages are structured with sample counts.
  • Case/control counts extracted.
  • The number of samples with European ancestry extracted.
Source code in src/gentropy/datasource/gwas_catalog/study_index.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
@dataclass
class StudyIndexGWASCatalogParser:
    """GWAS Catalog study index parser.

    The following information is harmonised from the GWAS Catalog:

    - All publication related information retained.
    - Mapped measured and background traits parsed.
    - Flagged if harmonized summary statistics datasets available.
    - If available, the ftp path to these files presented.
    - Ancestries from the discovery and replication stages are structured with sample counts.
    - Case/control counts extracted.
    - The number of samples with European ancestry extracted.

    """

    @staticmethod
    def _parse_discovery_samples(discovery_samples: Column) -> Column:
        """Parse discovery sample sizes from GWAS Catalog.

        This is a curated field. From publication sometimes it is not clear how the samples were split
        across the reported ancestries. In such cases we are assuming the ancestries were evenly presented
        and the total sample size is split:

        ["European, African", 100] -> ["European, 50], ["African", 50]

        Args:
            discovery_samples (Column): Raw discovery sample sizes

        Returns:
            Column: Parsed and de-duplicated list of discovery ancestries with sample size.

        Examples:
            >>> data = [('s1', "European", 10), ('s1', "African", 10), ('s2', "European, African, Asian", 100), ('s2', "European", 50)]
            >>> df = (
            ...    spark.createDataFrame(data, ['studyId', 'ancestry', 'sampleSize'])
            ...    .groupBy('studyId')
            ...    .agg(
            ...        f.collect_set(
            ...            f.struct('ancestry', 'sampleSize')
            ...        ).alias('discoverySampleSize')
            ...    )
            ...    .orderBy('studyId')
            ...    .withColumn('discoverySampleSize', StudyIndexGWASCatalogParser._parse_discovery_samples(f.col('discoverySampleSize')))
            ...    .select('discoverySampleSize')
            ...    .show(truncate=False)
            ... )
            +--------------------------------------------+
            |discoverySampleSize                         |
            +--------------------------------------------+
            |[{African, 10}, {European, 10}]             |
            |[{European, 83}, {African, 33}, {Asian, 33}]|
            +--------------------------------------------+
            <BLANKLINE>
        """
        # To initialize return objects for aggregate functions, schema has to be defined:
        schema = t.ArrayType(
            t.StructType(
                [
                    t.StructField("ancestry", t.StringType(), True),
                    t.StructField("sampleSize", t.IntegerType(), True),
                ]
            )
        )

        # Splitting comma separated ancestries:
        exploded_ancestries = f.transform(
            discovery_samples,
            lambda sample: f.split(sample.ancestry, r",\s(?![^()]*\))"),
        )

        # Initialize discoverySample object from unique list of ancestries:
        unique_ancestries = f.transform(
            f.aggregate(
                exploded_ancestries,
                f.array().cast(t.ArrayType(t.StringType())),
                lambda x, y: f.array_union(x, y),
                f.array_distinct,
            ),
            lambda ancestry: f.struct(
                ancestry.alias("ancestry"),
                f.lit(0).alias("sampleSize"),
            ),
        )

        # Computing sample sizes for ancestries when splitting is needed:
        resolved_sample_count = f.transform(
            f.arrays_zip(
                f.transform(exploded_ancestries, lambda pop: f.size(pop)).alias(
                    "pop_size"
                ),
                f.transform(discovery_samples, lambda pop: pop.sampleSize).alias(
                    "pop_count"
                ),
            ),
            lambda pop: (pop.pop_count / pop.pop_size).cast(t.IntegerType()),
        )

        # Flattening out ancestries with sample sizes:
        parsed_sample_size = f.aggregate(
            f.transform(
                f.arrays_zip(
                    exploded_ancestries.alias("ancestries"),
                    resolved_sample_count.alias("sample_count"),
                ),
                StudyIndexGWASCatalogParser._merge_ancestries_and_counts,
            ),
            f.array().cast(schema),
            lambda x, y: f.array_union(x, y),
        )

        # Normalize ancestries:
        return f.aggregate(
            parsed_sample_size,
            unique_ancestries,
            StudyIndexGWASCatalogParser._normalize_ancestries,
        )

    @staticmethod
    def _normalize_ancestries(merged: Column, ancestry: Column) -> Column:
        """Normalize ancestries from a list of structs.

        As some ancestry label might be repeated with different sample counts,
        these counts need to be collected.

        Args:
            merged (Column): Resulting list of struct with unique ancestries.
            ancestry (Column): One ancestry object coming from raw.

        Returns:
            Column: Unique list of ancestries with the sample counts.
        """
        # Iterating over the list of unique ancestries and adding the sample size if label matches:
        return f.transform(
            merged,
            lambda a: f.when(
                a.ancestry == ancestry.ancestry,
                f.struct(
                    a.ancestry.alias("ancestry"),
                    (a.sampleSize + ancestry.sampleSize)
                    .cast(t.IntegerType())
                    .alias("sampleSize"),
                ),
            ).otherwise(a),
        )

    @staticmethod
    def _merge_ancestries_and_counts(ancestry_group: Column) -> Column:
        """Merge ancestries with sample sizes.

        After splitting ancestry annotations, all resulting ancestries needs to be assigned
        with the proper sample size.

        Args:
            ancestry_group (Column): Each element is a struct with `sample_count` (int) and `ancestries` (list)

        Returns:
            Column: a list of structs with `ancestry` and `sampleSize` fields.

        Examples:
            >>> data = [(12, ['African', 'European']),(12, ['African'])]
            >>> (
            ...     spark.createDataFrame(data, ['sample_count', 'ancestries'])
            ...     .select(StudyIndexGWASCatalogParser._merge_ancestries_and_counts(f.struct('sample_count', 'ancestries')).alias('test'))
            ...     .show(truncate=False)
            ... )
            +-------------------------------+
            |test                           |
            +-------------------------------+
            |[{African, 12}, {European, 12}]|
            |[{African, 12}]                |
            +-------------------------------+
            <BLANKLINE>
        """
        # Extract sample size for the ancestry group:
        count = ancestry_group.sample_count

        # We need to loop through the ancestries:
        return f.transform(
            ancestry_group.ancestries,
            lambda ancestry: f.struct(
                ancestry.alias("ancestry"),
                count.alias("sampleSize"),
            ),
        )

    @staticmethod
    def parse_cohorts(raw_cohort: Column) -> Column:
        """Return a list of unique cohort labels from pipe separated list if provided.

        Args:
            raw_cohort (Column): Cohort list column, where labels are separated by `|` sign.

        Returns:
            Column: an array colun with string elements.

        Examples:
        >>> data = [('BioME|CaPS|Estonia|FHS|UKB|GERA|GERA|GERA',),(None,),]
        >>> spark.createDataFrame(data, ['cohorts']).select(StudyIndexGWASCatalogParser.parse_cohorts(f.col('cohorts')).alias('parsedCohorts')).show(truncate=False)
        +--------------------------------------+
        |parsedCohorts                         |
        +--------------------------------------+
        |[BioME, CaPS, Estonia, FHS, UKB, GERA]|
        |null                                  |
        +--------------------------------------+
        <BLANKLINE>
        """
        return f.when(
            (raw_cohort.isNotNull()) & (raw_cohort != ""),
            f.array_distinct(f.split(raw_cohort, r"\|")),
        )

    @classmethod
    def _parse_study_table(
        cls: type[StudyIndexGWASCatalogParser], catalog_studies: DataFrame
    ) -> StudyIndexGWASCatalog:
        """Harmonise GWASCatalog study table with `StudyIndex` schema.

        Args:
            catalog_studies (DataFrame): GWAS Catalog study table

        Returns:
            StudyIndexGWASCatalog: Parsed and annotated GWAS Catalog study table.
        """
        return StudyIndexGWASCatalog(
            _df=catalog_studies.select(
                f.coalesce(
                    f.col("STUDY ACCESSION"), f.monotonically_increasing_id()
                ).alias("studyId"),
                f.lit("GCST").alias("projectId"),
                f.lit("gwas").alias("studyType"),
                f.col("PUBMED ID").alias("pubmedId"),
                f.col("FIRST AUTHOR").alias("publicationFirstAuthor"),
                f.col("DATE").alias("publicationDate"),
                f.col("JOURNAL").alias("publicationJournal"),
                f.col("STUDY").alias("publicationTitle"),
                f.coalesce(f.col("DISEASE/TRAIT"), f.lit("Unreported")).alias(
                    "traitFromSource"
                ),
                f.col("INITIAL SAMPLE SIZE").alias("initialSampleSize"),
                parse_efos(f.col("MAPPED_TRAIT_URI")).alias("traitFromSourceMappedIds"),
                parse_efos(f.col("MAPPED BACKGROUND TRAIT URI")).alias(
                    "backgroundTraitFromSourceMappedIds"
                ),
                cls.parse_cohorts(f.col("COHORT")).alias("cohorts"),
            ),
            _schema=StudyIndexGWASCatalog.get_schema(),
        )

    @classmethod
    def from_source(
        cls: type[StudyIndexGWASCatalogParser],
        catalog_studies: DataFrame,
        ancestry_file: DataFrame,
    ) -> StudyIndexGWASCatalog:
        """Ingests study level metadata from the GWAS Catalog.

        Args:
            catalog_studies (DataFrame): GWAS Catalog raw study table
            ancestry_file (DataFrame): GWAS Catalog ancestry table.

        Returns:
            StudyIndexGWASCatalog: Parsed and annotated GWAS Catalog study table.
        """
        # Read GWAS Catalogue raw data
        return (
            cls._parse_study_table(catalog_studies)
            .annotate_ancestries(ancestry_file)
            .annotate_discovery_sample_sizes()
        )

from_source(catalog_studies: DataFrame, ancestry_file: DataFrame) -> StudyIndexGWASCatalog classmethod

Ingests study level metadata from the GWAS Catalog.

Parameters:

Name Type Description Default
catalog_studies DataFrame

GWAS Catalog raw study table

required
ancestry_file DataFrame

GWAS Catalog ancestry table.

required

Returns:

Name Type Description
StudyIndexGWASCatalog StudyIndexGWASCatalog

Parsed and annotated GWAS Catalog study table.

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
@classmethod
def from_source(
    cls: type[StudyIndexGWASCatalogParser],
    catalog_studies: DataFrame,
    ancestry_file: DataFrame,
) -> StudyIndexGWASCatalog:
    """Ingests study level metadata from the GWAS Catalog.

    Args:
        catalog_studies (DataFrame): GWAS Catalog raw study table
        ancestry_file (DataFrame): GWAS Catalog ancestry table.

    Returns:
        StudyIndexGWASCatalog: Parsed and annotated GWAS Catalog study table.
    """
    # Read GWAS Catalogue raw data
    return (
        cls._parse_study_table(catalog_studies)
        .annotate_ancestries(ancestry_file)
        .annotate_discovery_sample_sizes()
    )

parse_cohorts(raw_cohort: Column) -> Column staticmethod

Return a list of unique cohort labels from pipe separated list if provided.

Parameters:

Name Type Description Default
raw_cohort Column

Cohort list column, where labels are separated by | sign.

required

Returns:

Name Type Description
Column Column

an array colun with string elements.

Examples:

data = [('BioME|CaPS|Estonia|FHS|UKB|GERA|GERA|GERA',),(None,),] spark.createDataFrame(data, ['cohorts']).select(StudyIndexGWASCatalogParser.parse_cohorts(f.col('cohorts')).alias('parsedCohorts')).show(truncate=False) +--------------------------------------+ |parsedCohorts | +--------------------------------------+ |[BioME, CaPS, Estonia, FHS, UKB, GERA]| |null | +--------------------------------------+

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
@staticmethod
def parse_cohorts(raw_cohort: Column) -> Column:
    """Return a list of unique cohort labels from pipe separated list if provided.

    Args:
        raw_cohort (Column): Cohort list column, where labels are separated by `|` sign.

    Returns:
        Column: an array colun with string elements.

    Examples:
    >>> data = [('BioME|CaPS|Estonia|FHS|UKB|GERA|GERA|GERA',),(None,),]
    >>> spark.createDataFrame(data, ['cohorts']).select(StudyIndexGWASCatalogParser.parse_cohorts(f.col('cohorts')).alias('parsedCohorts')).show(truncate=False)
    +--------------------------------------+
    |parsedCohorts                         |
    +--------------------------------------+
    |[BioME, CaPS, Estonia, FHS, UKB, GERA]|
    |null                                  |
    +--------------------------------------+
    <BLANKLINE>
    """
    return f.when(
        (raw_cohort.isNotNull()) & (raw_cohort != ""),
        f.array_distinct(f.split(raw_cohort, r"\|")),
    )

gentropy.datasource.gwas_catalog.study_index.StudyIndexGWASCatalog dataclass

Bases: StudyIndex

Study index dataset from GWAS Catalog.

A study index dataset captures all the metadata for all studies including GWAS and Molecular QTL.

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
@dataclass
class StudyIndexGWASCatalog(StudyIndex):
    """Study index dataset from GWAS Catalog.

    A study index dataset captures all the metadata for all studies including GWAS and Molecular QTL.
    """

    def update_study_id(
        self: StudyIndexGWASCatalog, study_annotation: DataFrame
    ) -> StudyIndexGWASCatalog:
        """Update studyId with a dataframe containing study.

        Args:
            study_annotation (DataFrame): Dataframe containing `updatedStudyId`, `traitFromSource`, `traitFromSourceMappedIds` and key column `studyId`.

        Returns:
            StudyIndexGWASCatalog: Updated study table.
        """
        self.df = (
            self._df.join(
                study_annotation.select(
                    *[
                        f.col(c).alias(f"updated{c}")
                        if c not in ["studyId", "updatedStudyId"]
                        else f.col(c)
                        for c in study_annotation.columns
                    ]
                ),
                on="studyId",
                how="left",
            )
            .withColumn(
                "studyId",
                f.coalesce(f.col("updatedStudyId"), f.col("studyId")),
            )
            .withColumn(
                "traitFromSource",
                f.coalesce(f.col("updatedtraitFromSource"), f.col("traitFromSource")),
            )
            .withColumn(
                "traitFromSourceMappedIds",
                f.coalesce(
                    f.col("updatedtraitFromSourceMappedIds"),
                    f.col("traitFromSourceMappedIds"),
                ),
            )
            .select(self._df.columns)
        )

        return self

    def annotate_from_study_curation(
        self: StudyIndexGWASCatalog, curation_table: DataFrame | None
    ) -> StudyIndexGWASCatalog:
        """Annotating study index with curation.

        Args:
            curation_table (DataFrame | None): Curated GWAS Catalog studies with summary statistics

        Returns:
            StudyIndexGWASCatalog: Updated study index
        """
        # Providing curation table is optional. However once this method is called, the quality and studyFlag columns are added.
        if curation_table is None:
            return self

        studies = self.df

        if "qualityControls" not in studies.columns:
            studies = studies.withColumn("qualityControls", f.array())

        if "analysisFlags" not in studies.columns:
            studies = studies.withColumn("analysisFlags", f.array())

        # Adding prefix to columns in the curation table:
        curation_table = curation_table.select(
            *[
                f.col(column).alias(f"curation_{column}")
                if column != "studyId"
                else f.col(column)
                for column in curation_table.columns
            ]
        )

        # Based on the curation table, columns needs to be updated:
        curated_df = (
            studies.join(
                curation_table.withColumn("isCurated", f.lit(True)),
                on="studyId",
                how="left",
            )
            .withColumn("isCurated", f.coalesce(f.col("isCurated"), f.lit(False)))
            # Updating study type:
            .withColumn(
                "studyType", f.coalesce(f.col("curation_studyType"), f.col("studyType"))
            )
            # Updating study annotation flags:
            .withColumn(
                "analysisFlags",
                f.array_union(f.col("analysisFlags"), f.col("curation_analysisFlags")),
            )
            .withColumn("analysisFlags", f.coalesce(f.col("analysisFlags"), f.array()))
            .withColumn(
                "qualityControls",
                StudyIndex.update_quality_flag(
                    f.col("qualityControls"),
                    ~f.col("isCurated"),
                    StudyQualityCheck.NO_OT_CURATION,
                ),
            )
            # Dropping columns coming from the curation table:
            .select(*studies.columns)
        )
        return StudyIndexGWASCatalog(
            _df=curated_df, _schema=StudyIndexGWASCatalog.get_schema()
        )

    def extract_studies_for_curation(
        self: StudyIndexGWASCatalog, curation: DataFrame | None
    ) -> DataFrame:
        """Extract studies for curation.

        Args:
            curation (DataFrame | None): Dataframe with curation.

        Returns:
            DataFrame: Updated curation table. New studies are have the `isCurated` False.
        """
        # If no curation table provided, assume all studies needs curation:
        if curation is None:
            return (
                self.df
                # Curation only applyed on studies with summary statistics:
                .filter(f.col("hasSumstats"))
                # Adding columns expected in the curation table - array columns aready flattened:
                .withColumn("studyType", f.lit(None).cast(t.StringType()))
                .withColumn("analysisFlag", f.lit(None).cast(t.StringType()))
                .withColumn("qualityControl", f.lit(None).cast(t.StringType()))
                .withColumn("isCurated", f.lit(False).cast(t.StringType()))
            )

        # Adding prefix to columns in the curation table:
        curation = curation.select(
            *[
                f.col(column).alias(f"curation_{column}")
                if column != "studyId"
                else f.col(column)
                for column in curation.columns
            ]
        )

        return (
            self.df
            # Curation only applyed on studies with summary statistics:
            .filter(f.col("hasSumstats"))
            .join(curation, on="studyId", how="left")
            .select(
                "studyId",
                # Propagate existing curation - array columns are being flattened:
                f.col("curation_studyType").alias("studyType"),
                f.array_join(f.col("curation_analysisFlags"), "|").alias(
                    "analysisFlag"
                ),
                f.array_join(f.col("curation_qualityControls"), "|").alias(
                    "qualityControl"
                ),
                # This boolean flag needs to be casted to string, because saving to tsv would fail otherwise:
                f.coalesce(f.col("curation_isCurated"), f.lit(False))
                .cast(t.StringType())
                .alias("isCurated"),
                # The following columns are propagated to make curation easier:
                "pubmedId",
                "publicationTitle",
                "traitFromSource",
            )
        )

    def annotate_ancestries(
        self: StudyIndexGWASCatalog, ancestry_lut: DataFrame
    ) -> StudyIndexGWASCatalog:
        """Extracting sample sizes and ancestry information.

        This function parses the ancestry data. Also get counts for the europeans in the same
        discovery stage.

        Args:
            ancestry_lut (DataFrame): Ancestry table as downloaded from the GWAS Catalog

        Returns:
            StudyIndexGWASCatalog: Slimmed and cleaned version of the ancestry annotation.
        """
        from gentropy.datasource.gwas_catalog.study_index import (
            StudyIndexGWASCatalogParser as GWASCatalogStudyIndexParser,
        )

        ancestry = (
            ancestry_lut
            # Convert column headers to camelcase:
            .transform(
                lambda df: df.select(
                    *[f.expr(column2camel_case(x)) for x in df.columns]
                )
            ).withColumnRenamed(
                "studyAccession", "studyId"
            )  # studyId has not been split yet
        )

        # Get a high resolution dataset on experimental stage:
        ancestry_stages = (
            ancestry.groupBy("studyId")
            .pivot("stage")
            .agg(
                f.collect_set(
                    f.struct(
                        f.col("broadAncestralCategory").alias("ancestry"),
                        f.col("numberOfIndividuals")
                        .cast(t.IntegerType())
                        .alias("sampleSize"),
                    )
                )
            )
            .withColumn(
                "discoverySamples",
                GWASCatalogStudyIndexParser._parse_discovery_samples(f.col("initial")),
            )
            .withColumnRenamed("replication", "replicationSamples")
            # Mapping discovery stage ancestries to LD reference:
            .withColumn(
                "ldPopulationStructure",
                self.aggregate_and_map_ancestries(f.col("discoverySamples")),
            )
            .drop("initial")
            .persist()
        )

        # Generate information on the ancestry composition of the discovery stage, and calculate
        # the proportion of the Europeans:
        europeans_deconvoluted = (
            ancestry
            # Focus on discovery stage:
            .filter(f.col("stage") == "initial")
            # Sorting ancestries if European:
            .withColumn(
                "ancestryFlag",
                # Excluding finnish:
                f.when(
                    f.col("initialSampleDescription").contains("Finnish"),
                    f.lit("other"),
                )
                # Excluding Icelandic population:
                .when(
                    f.col("initialSampleDescription").contains("Icelandic"),
                    f.lit("other"),
                )
                # Including European ancestry:
                .when(f.col("broadAncestralCategory") == "European", f.lit("european"))
                # Exclude all other population:
                .otherwise("other"),
            )
            # Grouping by study accession and initial sample description:
            .groupBy("studyId")
            .pivot("ancestryFlag")
            .agg(
                # Summarizing sample sizes for all ancestries:
                f.sum(f.col("numberOfIndividuals"))
            )
            # Do arithmetics to make sure we have the right proportion of european in the set:
            .withColumn(
                "initialSampleCountEuropean",
                f.when(f.col("european").isNull(), f.lit(0)).otherwise(
                    f.col("european")
                ),
            )
            .withColumn(
                "initialSampleCountOther",
                f.when(f.col("other").isNull(), f.lit(0)).otherwise(f.col("other")),
            )
            .withColumn(
                "initialSampleCount",
                f.col("initialSampleCountEuropean") + f.col("other"),
            )
            .drop(
                "european",
                "other",
                "initialSampleCount",
                "initialSampleCountEuropean",
                "initialSampleCountOther",
            )
        )

        parsed_ancestry_lut = ancestry_stages.join(
            europeans_deconvoluted, on="studyId", how="outer"
        ).select(
            "studyId", "discoverySamples", "ldPopulationStructure", "replicationSamples"
        )
        self.df = self.df.join(parsed_ancestry_lut, on="studyId", how="left")
        return self

    def annotate_discovery_sample_sizes(
        self: StudyIndexGWASCatalog,
    ) -> StudyIndexGWASCatalog:
        """Extract the sample size of the discovery stage of the study as annotated in the GWAS Catalog.

        For some studies that measure quantitative traits, nCases and nControls can't be extracted. Therefore, we assume these are 0.

        Returns:
            StudyIndexGWASCatalog: object with columns `nCases`, `nControls`, and `nSamples` per `studyId` correctly extracted.
        """
        sample_size_lut = (
            self.df.select(
                "studyId",
                f.explode_outer(f.split(f.col("initialSampleSize"), r",\s+")).alias(
                    "samples"
                ),
            )
            # Extracting the sample size from the string:
            .withColumn(
                "sampleSize",
                f.regexp_extract(
                    f.regexp_replace(f.col("samples"), ",", ""), r"[0-9,]+", 0
                ).cast(t.IntegerType()),
            )
            .select(
                "studyId",
                "sampleSize",
                f.when(f.col("samples").contains("cases"), f.col("sampleSize"))
                .otherwise(f.lit(0))
                .alias("nCases"),
                f.when(f.col("samples").contains("controls"), f.col("sampleSize"))
                .otherwise(f.lit(0))
                .alias("nControls"),
            )
            # Aggregating sample sizes for all ancestries:
            .groupBy("studyId")  # studyId has not been split yet
            .agg(
                f.sum("nCases").cast("integer").alias("nCases"),
                f.sum("nControls").cast("integer").alias("nControls"),
                f.sum("sampleSize").cast("integer").alias("nSamples"),
            )
        )
        self.df = self.df.join(sample_size_lut, on="studyId", how="left")
        return self

    def apply_inclusion_list(
        self: StudyIndexGWASCatalog, inclusion_list: DataFrame
    ) -> StudyIndexGWASCatalog:
        """Restricting GWAS Catalog studies based on a list of accepted study identifiers.

        Args:
            inclusion_list (DataFrame): List of accepted GWAS Catalog study identifiers

        Returns:
            StudyIndexGWASCatalog: Filtered dataset.
        """
        return StudyIndexGWASCatalog(
            _df=self.df.join(inclusion_list, on="studyId", how="inner"),
            _schema=StudyIndexGWASCatalog.get_schema(),
        )

    def add_no_sumstats_flag(self: StudyIndexGWASCatalog) -> StudyIndexGWASCatalog:
        """Add a flag to the study index if no summary statistics are available.

        Returns:
            StudyIndexGWASCatalog: Updated study index.
        """
        self.df = self.df.withColumn(
            "qualityControls",
            f.array(f.lit(StudyQualityCheck.SUMSTATS_NOT_AVAILABLE.value))
        )
        return self

    @staticmethod
    def _parse_gwas_catalog_study_id(sumstats_path_column: str) -> Column:
        """Extract GWAS Catalog study accession from the summary statistics path.

        Args:
            sumstats_path_column (str): column *name* for the summary statistics path

        Returns:
            Column: GWAS Catalog study accession.

        Examples:
            >>> data = [
            ... ('./GCST90086001-GCST90087000/GCST90086758/harmonised/35078996-GCST90086758-EFO_0007937.h.tsv.gz',),
            ...    ('gs://open-targets-gwas-summary-stats/harmonised/GCST000568.parquet/',),
            ...    (None,)
            ... ]
            >>> spark.createDataFrame(data, ['testColumn']).select(StudyIndexGWASCatalog._parse_gwas_catalog_study_id('testColumn').alias('accessions')).collect()
            [Row(accessions='GCST90086758'), Row(accessions='GCST000568'), Row(accessions=None)]
        """
        accesions = f.expr(rf"regexp_extract_all({sumstats_path_column}, '(GCST\\d+)')")
        return accesions[f.size(accesions) - 1]

add_no_sumstats_flag() -> StudyIndexGWASCatalog

Add a flag to the study index if no summary statistics are available.

Returns:

Name Type Description
StudyIndexGWASCatalog StudyIndexGWASCatalog

Updated study index.

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
650
651
652
653
654
655
656
657
658
659
660
def add_no_sumstats_flag(self: StudyIndexGWASCatalog) -> StudyIndexGWASCatalog:
    """Add a flag to the study index if no summary statistics are available.

    Returns:
        StudyIndexGWASCatalog: Updated study index.
    """
    self.df = self.df.withColumn(
        "qualityControls",
        f.array(f.lit(StudyQualityCheck.SUMSTATS_NOT_AVAILABLE.value))
    )
    return self

annotate_ancestries(ancestry_lut: DataFrame) -> StudyIndexGWASCatalog

Extracting sample sizes and ancestry information.

This function parses the ancestry data. Also get counts for the europeans in the same discovery stage.

Parameters:

Name Type Description Default
ancestry_lut DataFrame

Ancestry table as downloaded from the GWAS Catalog

required

Returns:

Name Type Description
StudyIndexGWASCatalog StudyIndexGWASCatalog

Slimmed and cleaned version of the ancestry annotation.

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
def annotate_ancestries(
    self: StudyIndexGWASCatalog, ancestry_lut: DataFrame
) -> StudyIndexGWASCatalog:
    """Extracting sample sizes and ancestry information.

    This function parses the ancestry data. Also get counts for the europeans in the same
    discovery stage.

    Args:
        ancestry_lut (DataFrame): Ancestry table as downloaded from the GWAS Catalog

    Returns:
        StudyIndexGWASCatalog: Slimmed and cleaned version of the ancestry annotation.
    """
    from gentropy.datasource.gwas_catalog.study_index import (
        StudyIndexGWASCatalogParser as GWASCatalogStudyIndexParser,
    )

    ancestry = (
        ancestry_lut
        # Convert column headers to camelcase:
        .transform(
            lambda df: df.select(
                *[f.expr(column2camel_case(x)) for x in df.columns]
            )
        ).withColumnRenamed(
            "studyAccession", "studyId"
        )  # studyId has not been split yet
    )

    # Get a high resolution dataset on experimental stage:
    ancestry_stages = (
        ancestry.groupBy("studyId")
        .pivot("stage")
        .agg(
            f.collect_set(
                f.struct(
                    f.col("broadAncestralCategory").alias("ancestry"),
                    f.col("numberOfIndividuals")
                    .cast(t.IntegerType())
                    .alias("sampleSize"),
                )
            )
        )
        .withColumn(
            "discoverySamples",
            GWASCatalogStudyIndexParser._parse_discovery_samples(f.col("initial")),
        )
        .withColumnRenamed("replication", "replicationSamples")
        # Mapping discovery stage ancestries to LD reference:
        .withColumn(
            "ldPopulationStructure",
            self.aggregate_and_map_ancestries(f.col("discoverySamples")),
        )
        .drop("initial")
        .persist()
    )

    # Generate information on the ancestry composition of the discovery stage, and calculate
    # the proportion of the Europeans:
    europeans_deconvoluted = (
        ancestry
        # Focus on discovery stage:
        .filter(f.col("stage") == "initial")
        # Sorting ancestries if European:
        .withColumn(
            "ancestryFlag",
            # Excluding finnish:
            f.when(
                f.col("initialSampleDescription").contains("Finnish"),
                f.lit("other"),
            )
            # Excluding Icelandic population:
            .when(
                f.col("initialSampleDescription").contains("Icelandic"),
                f.lit("other"),
            )
            # Including European ancestry:
            .when(f.col("broadAncestralCategory") == "European", f.lit("european"))
            # Exclude all other population:
            .otherwise("other"),
        )
        # Grouping by study accession and initial sample description:
        .groupBy("studyId")
        .pivot("ancestryFlag")
        .agg(
            # Summarizing sample sizes for all ancestries:
            f.sum(f.col("numberOfIndividuals"))
        )
        # Do arithmetics to make sure we have the right proportion of european in the set:
        .withColumn(
            "initialSampleCountEuropean",
            f.when(f.col("european").isNull(), f.lit(0)).otherwise(
                f.col("european")
            ),
        )
        .withColumn(
            "initialSampleCountOther",
            f.when(f.col("other").isNull(), f.lit(0)).otherwise(f.col("other")),
        )
        .withColumn(
            "initialSampleCount",
            f.col("initialSampleCountEuropean") + f.col("other"),
        )
        .drop(
            "european",
            "other",
            "initialSampleCount",
            "initialSampleCountEuropean",
            "initialSampleCountOther",
        )
    )

    parsed_ancestry_lut = ancestry_stages.join(
        europeans_deconvoluted, on="studyId", how="outer"
    ).select(
        "studyId", "discoverySamples", "ldPopulationStructure", "replicationSamples"
    )
    self.df = self.df.join(parsed_ancestry_lut, on="studyId", how="left")
    return self

annotate_discovery_sample_sizes() -> StudyIndexGWASCatalog

Extract the sample size of the discovery stage of the study as annotated in the GWAS Catalog.

For some studies that measure quantitative traits, nCases and nControls can't be extracted. Therefore, we assume these are 0.

Returns:

Name Type Description
StudyIndexGWASCatalog StudyIndexGWASCatalog

object with columns nCases, nControls, and nSamples per studyId correctly extracted.

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def annotate_discovery_sample_sizes(
    self: StudyIndexGWASCatalog,
) -> StudyIndexGWASCatalog:
    """Extract the sample size of the discovery stage of the study as annotated in the GWAS Catalog.

    For some studies that measure quantitative traits, nCases and nControls can't be extracted. Therefore, we assume these are 0.

    Returns:
        StudyIndexGWASCatalog: object with columns `nCases`, `nControls`, and `nSamples` per `studyId` correctly extracted.
    """
    sample_size_lut = (
        self.df.select(
            "studyId",
            f.explode_outer(f.split(f.col("initialSampleSize"), r",\s+")).alias(
                "samples"
            ),
        )
        # Extracting the sample size from the string:
        .withColumn(
            "sampleSize",
            f.regexp_extract(
                f.regexp_replace(f.col("samples"), ",", ""), r"[0-9,]+", 0
            ).cast(t.IntegerType()),
        )
        .select(
            "studyId",
            "sampleSize",
            f.when(f.col("samples").contains("cases"), f.col("sampleSize"))
            .otherwise(f.lit(0))
            .alias("nCases"),
            f.when(f.col("samples").contains("controls"), f.col("sampleSize"))
            .otherwise(f.lit(0))
            .alias("nControls"),
        )
        # Aggregating sample sizes for all ancestries:
        .groupBy("studyId")  # studyId has not been split yet
        .agg(
            f.sum("nCases").cast("integer").alias("nCases"),
            f.sum("nControls").cast("integer").alias("nControls"),
            f.sum("sampleSize").cast("integer").alias("nSamples"),
        )
    )
    self.df = self.df.join(sample_size_lut, on="studyId", how="left")
    return self

annotate_from_study_curation(curation_table: DataFrame | None) -> StudyIndexGWASCatalog

Annotating study index with curation.

Parameters:

Name Type Description Default
curation_table DataFrame | None

Curated GWAS Catalog studies with summary statistics

required

Returns:

Name Type Description
StudyIndexGWASCatalog StudyIndexGWASCatalog

Updated study index

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
def annotate_from_study_curation(
    self: StudyIndexGWASCatalog, curation_table: DataFrame | None
) -> StudyIndexGWASCatalog:
    """Annotating study index with curation.

    Args:
        curation_table (DataFrame | None): Curated GWAS Catalog studies with summary statistics

    Returns:
        StudyIndexGWASCatalog: Updated study index
    """
    # Providing curation table is optional. However once this method is called, the quality and studyFlag columns are added.
    if curation_table is None:
        return self

    studies = self.df

    if "qualityControls" not in studies.columns:
        studies = studies.withColumn("qualityControls", f.array())

    if "analysisFlags" not in studies.columns:
        studies = studies.withColumn("analysisFlags", f.array())

    # Adding prefix to columns in the curation table:
    curation_table = curation_table.select(
        *[
            f.col(column).alias(f"curation_{column}")
            if column != "studyId"
            else f.col(column)
            for column in curation_table.columns
        ]
    )

    # Based on the curation table, columns needs to be updated:
    curated_df = (
        studies.join(
            curation_table.withColumn("isCurated", f.lit(True)),
            on="studyId",
            how="left",
        )
        .withColumn("isCurated", f.coalesce(f.col("isCurated"), f.lit(False)))
        # Updating study type:
        .withColumn(
            "studyType", f.coalesce(f.col("curation_studyType"), f.col("studyType"))
        )
        # Updating study annotation flags:
        .withColumn(
            "analysisFlags",
            f.array_union(f.col("analysisFlags"), f.col("curation_analysisFlags")),
        )
        .withColumn("analysisFlags", f.coalesce(f.col("analysisFlags"), f.array()))
        .withColumn(
            "qualityControls",
            StudyIndex.update_quality_flag(
                f.col("qualityControls"),
                ~f.col("isCurated"),
                StudyQualityCheck.NO_OT_CURATION,
            ),
        )
        # Dropping columns coming from the curation table:
        .select(*studies.columns)
    )
    return StudyIndexGWASCatalog(
        _df=curated_df, _schema=StudyIndexGWASCatalog.get_schema()
    )

apply_inclusion_list(inclusion_list: DataFrame) -> StudyIndexGWASCatalog

Restricting GWAS Catalog studies based on a list of accepted study identifiers.

Parameters:

Name Type Description Default
inclusion_list DataFrame

List of accepted GWAS Catalog study identifiers

required

Returns:

Name Type Description
StudyIndexGWASCatalog StudyIndexGWASCatalog

Filtered dataset.

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
def apply_inclusion_list(
    self: StudyIndexGWASCatalog, inclusion_list: DataFrame
) -> StudyIndexGWASCatalog:
    """Restricting GWAS Catalog studies based on a list of accepted study identifiers.

    Args:
        inclusion_list (DataFrame): List of accepted GWAS Catalog study identifiers

    Returns:
        StudyIndexGWASCatalog: Filtered dataset.
    """
    return StudyIndexGWASCatalog(
        _df=self.df.join(inclusion_list, on="studyId", how="inner"),
        _schema=StudyIndexGWASCatalog.get_schema(),
    )

extract_studies_for_curation(curation: DataFrame | None) -> DataFrame

Extract studies for curation.

Parameters:

Name Type Description Default
curation DataFrame | None

Dataframe with curation.

required

Returns:

Name Type Description
DataFrame DataFrame

Updated curation table. New studies are have the isCurated False.

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
def extract_studies_for_curation(
    self: StudyIndexGWASCatalog, curation: DataFrame | None
) -> DataFrame:
    """Extract studies for curation.

    Args:
        curation (DataFrame | None): Dataframe with curation.

    Returns:
        DataFrame: Updated curation table. New studies are have the `isCurated` False.
    """
    # If no curation table provided, assume all studies needs curation:
    if curation is None:
        return (
            self.df
            # Curation only applyed on studies with summary statistics:
            .filter(f.col("hasSumstats"))
            # Adding columns expected in the curation table - array columns aready flattened:
            .withColumn("studyType", f.lit(None).cast(t.StringType()))
            .withColumn("analysisFlag", f.lit(None).cast(t.StringType()))
            .withColumn("qualityControl", f.lit(None).cast(t.StringType()))
            .withColumn("isCurated", f.lit(False).cast(t.StringType()))
        )

    # Adding prefix to columns in the curation table:
    curation = curation.select(
        *[
            f.col(column).alias(f"curation_{column}")
            if column != "studyId"
            else f.col(column)
            for column in curation.columns
        ]
    )

    return (
        self.df
        # Curation only applyed on studies with summary statistics:
        .filter(f.col("hasSumstats"))
        .join(curation, on="studyId", how="left")
        .select(
            "studyId",
            # Propagate existing curation - array columns are being flattened:
            f.col("curation_studyType").alias("studyType"),
            f.array_join(f.col("curation_analysisFlags"), "|").alias(
                "analysisFlag"
            ),
            f.array_join(f.col("curation_qualityControls"), "|").alias(
                "qualityControl"
            ),
            # This boolean flag needs to be casted to string, because saving to tsv would fail otherwise:
            f.coalesce(f.col("curation_isCurated"), f.lit(False))
            .cast(t.StringType())
            .alias("isCurated"),
            # The following columns are propagated to make curation easier:
            "pubmedId",
            "publicationTitle",
            "traitFromSource",
        )
    )

update_study_id(study_annotation: DataFrame) -> StudyIndexGWASCatalog

Update studyId with a dataframe containing study.

Parameters:

Name Type Description Default
study_annotation DataFrame

Dataframe containing updatedStudyId, traitFromSource, traitFromSourceMappedIds and key column studyId.

required

Returns:

Name Type Description
StudyIndexGWASCatalog StudyIndexGWASCatalog

Updated study table.

Source code in src/gentropy/datasource/gwas_catalog/study_index.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def update_study_id(
    self: StudyIndexGWASCatalog, study_annotation: DataFrame
) -> StudyIndexGWASCatalog:
    """Update studyId with a dataframe containing study.

    Args:
        study_annotation (DataFrame): Dataframe containing `updatedStudyId`, `traitFromSource`, `traitFromSourceMappedIds` and key column `studyId`.

    Returns:
        StudyIndexGWASCatalog: Updated study table.
    """
    self.df = (
        self._df.join(
            study_annotation.select(
                *[
                    f.col(c).alias(f"updated{c}")
                    if c not in ["studyId", "updatedStudyId"]
                    else f.col(c)
                    for c in study_annotation.columns
                ]
            ),
            on="studyId",
            how="left",
        )
        .withColumn(
            "studyId",
            f.coalesce(f.col("updatedStudyId"), f.col("studyId")),
        )
        .withColumn(
            "traitFromSource",
            f.coalesce(f.col("updatedtraitFromSource"), f.col("traitFromSource")),
        )
        .withColumn(
            "traitFromSourceMappedIds",
            f.coalesce(
                f.col("updatedtraitFromSourceMappedIds"),
                f.col("traitFromSourceMappedIds"),
            ),
        )
        .select(self._df.columns)
    )

    return self