Skip to content

Coloc using Posterior Inclusion Probabilities (PIP)

gentropy.method.colocalisation.ColocPIP

Bases: ColocalisationMethodInterface

Calculate bayesian colocalisation based on overlapping signals from credible sets using PIPs.

Source code in src/gentropy/method/colocalisation.py
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
class ColocPIP(ColocalisationMethodInterface):
    """Calculate bayesian colocalisation based on overlapping signals from credible sets using PIPs."""

    METHOD_NAME: str = "COLOC_PIP"
    METHOD_METRIC: str = "h4"

    @staticmethod
    def _get_posteriors(
        pip1_variants: NDArray[np.str_],
        pip1_values: NDArray[np.float64],
        pip2_variants: NDArray[np.str_],
        pip2_values: NDArray[np.float64],
        p1: float,
        p2: float,
        p12: float,
    ) -> DenseVector:
        """Approximate coloc posteriors using only PIPs, following the R coloc.pp logic.

        Args:
            pip1_variants (NDArray[np.str_]): Array of variant names for trait 1
            pip1_values (NDArray[np.float64]): Array of PIP values for trait 1
            pip2_variants (NDArray[np.str_]): Array of variant names for trait 2
            pip2_values (NDArray[np.float64]): Array of PIP values for trait 2
            p1 (float): Prior on variant being causal for trait 1
            p2 (float): Prior on variant being causal for trait 2
            p12 (float): Prior on variant being causal for traits 1 and 2

        Returns:
            DenseVector: [H0, H1, H2, H3, H4] posteriors
        """
        # Union of SNPs
        snp_names = np.unique(np.concatenate((pip1_variants, pip2_variants)))
        pip1_dict = dict(zip(pip1_variants, pip1_values))
        pip2_dict = dict(zip(pip2_variants, pip2_values))

        # Ensure priors are never zero to avoid log(0)
        pseudocount = 1e-16
        p1 = max(p1, pseudocount)
        p2 = max(p2, pseudocount)
        p12 = max(p12, pseudocount)
        pip1_vec = np.array([pip1_dict.get(snp, np.nan) for snp in snp_names])
        pip2_vec = np.array([pip2_dict.get(snp, np.nan) for snp in snp_names])

        # Ensure no PIPs are exactly zero by adding pseudocount
        pip1_vec = np.maximum(pip1_vec, pseudocount)
        pip2_vec = np.maximum(pip2_vec, pseudocount)

        # Work in log-space
        log_pip1 = np.log(pip1_vec)
        log_pip2 = np.log(pip2_vec)
        sum_log_pip1 = get_logsum(log_pip1)
        sum_log_pip2 = get_logsum(log_pip2)
        log_sum_both = get_logsum((log_pip1 + log_pip2).astype(np.float64))

        # Compute logdiff as in R coloc:::logdiff
        x = sum_log_pip1 + sum_log_pip2
        y = log_sum_both
        my_max = max(x, y)
        diff_arg = max(np.exp(x - my_max) - np.exp(y - my_max), 0)
        if diff_arg == 0:
            logdiff = -np.inf
        else:
            logdiff = my_max + np.log(diff_arg)

        # H3: distinct causal
        PP3 = np.log(p1) + np.log(p2) + logdiff

        # H4: shared causal
        PP4 = np.log(p12) + log_sum_both

        # Normalize
        denom = get_logsum(np.array([PP3, PP4]))
        PP4 = np.exp(PP4 - denom)
        PP3 = np.exp(PP3 - denom)

        return Vectors.dense([0.0, 0.0, 0.0, PP3, PP4])

    @classmethod
    def colocalise(
        cls: type[ColocPIP],
        overlapping_signals: StudyLocusOverlap,
        **kwargs: Any,
    ) -> Colocalisation:
        """Calculate approximate bayesian colocalisation based on overlapping signals with PIPs.

        Args:
            overlapping_signals (StudyLocusOverlap): overlapping peaks
            **kwargs (Any): Additional parameters passed to the colocalise method.

        Keyword Args:
            priorc1 (float): Prior on variant being causal for trait 1. Defaults to 1e-4.
            priorc2 (float): Prior on variant being causal for trait 2. Defaults to 1e-4.
            priorc12 (float): Prior on variant being causal for traits 1 and 2. Defaults to 1e-5.

        Returns:
            Colocalisation: Colocalisation results

        Raises:
            TypeError: When passed incorrect prior argument types.
        """
        # Ensure priors are always present, even if not passed
        priorc1 = kwargs.get("priorc1") or 1e-4
        priorc2 = kwargs.get("priorc2") or 1e-4
        priorc12 = kwargs.get("priorc12") or 1e-5
        priors = [priorc1, priorc2, priorc12]
        if any(not isinstance(prior, float) for prior in priors):
            raise TypeError(
                "Passed incorrect type(s) for prior parameters. got %s",
                {type(p): p for p in priors},
            )

        # Register UDF for calculating posteriors from PIPs
        posteriors_udf = f.udf(cls._get_posteriors, VectorUDT())

        return Colocalisation(
            _df=(
                overlapping_signals.df.withColumn(
                    "tagVariantSource", get_tag_variant_source(f.col("statistics"))
                )
                .select("*", "statistics.*")
                # Before processing, ensure posterior probabilities are not null
                .fillna(
                    0,
                    subset=[
                        "left_posteriorProbability",
                        "right_posteriorProbability",
                    ],
                )
                # Group by overlapping peaks and collect PIPs as arrays
                .groupBy(
                    "chromosome",
                    "leftStudyLocusId",
                    "rightStudyLocusId",
                    "rightStudyType",
                )
                .agg(
                    f.size(
                        f.filter(
                            f.collect_list(f.col("tagVariantSource")),
                            lambda x: x == "both",
                        )
                    )
                    .cast(t.LongType())
                    .alias("numberColocalisingVariants"),
                    # Collect variant IDs and PIPs for left study
                    f.collect_list(f.col("tagVariantId")).alias("left_variants"),
                    f.collect_list(f.col("left_posteriorProbability")).alias(
                        "left_pips"
                    ),
                    # Collect variant IDs and PIPs for right study
                    f.collect_list(f.col("tagVariantId")).alias("right_variants"),
                    f.collect_list(f.col("right_posteriorProbability")).alias(
                        "right_pips"
                    ),
                )
                # Calculate posteriors using the PIP approximation
                .withColumn(
                    "posteriors",
                    posteriors_udf(
                        f.col("left_variants").cast("array<string>"),
                        f.col("left_pips").cast("array<double>"),
                        f.col("right_variants").cast("array<string>"),
                        f.col("right_pips").cast("array<double>"),
                        f.lit(priorc1),
                        f.lit(priorc2),
                        f.lit(priorc12),
                    ),
                )
                # Extract individual hypothesis posteriors
                .withColumn("h0", fml.vector_to_array(f.col("posteriors")).getItem(0))
                .withColumn("h1", fml.vector_to_array(f.col("posteriors")).getItem(1))
                .withColumn("h2", fml.vector_to_array(f.col("posteriors")).getItem(2))
                .withColumn("h3", fml.vector_to_array(f.col("posteriors")).getItem(3))
                .withColumn("h4", fml.vector_to_array(f.col("posteriors")).getItem(4))
                # Clean up intermediate columns
                .drop(
                    "posteriors",
                    "left_variants",
                    "left_pips",
                    "right_variants",
                    "right_pips",
                )
                .withColumn("colocalisationMethod", f.lit(cls.METHOD_NAME))
                .join(
                    overlapping_signals.calculate_beta_ratio(),
                    on=["leftStudyLocusId", "rightStudyLocusId", "chromosome"],
                    how="left",
                )
            ),
            _schema=Colocalisation.get_schema(),
        )

colocalise(overlapping_signals: StudyLocusOverlap, **kwargs: Any) -> Colocalisation classmethod

Calculate approximate bayesian colocalisation based on overlapping signals with PIPs.

Parameters:

Name Type Description Default
overlapping_signals StudyLocusOverlap

overlapping peaks

required
**kwargs Any

Additional parameters passed to the colocalise method.

{}

Other Parameters:

Name Type Description
priorc1 float

Prior on variant being causal for trait 1. Defaults to 1e-4.

priorc2 float

Prior on variant being causal for trait 2. Defaults to 1e-4.

priorc12 float

Prior on variant being causal for traits 1 and 2. Defaults to 1e-5.

Returns:

Name Type Description
Colocalisation Colocalisation

Colocalisation results

Raises:

Type Description
TypeError

When passed incorrect prior argument types.

Source code in src/gentropy/method/colocalisation.py
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
@classmethod
def colocalise(
    cls: type[ColocPIP],
    overlapping_signals: StudyLocusOverlap,
    **kwargs: Any,
) -> Colocalisation:
    """Calculate approximate bayesian colocalisation based on overlapping signals with PIPs.

    Args:
        overlapping_signals (StudyLocusOverlap): overlapping peaks
        **kwargs (Any): Additional parameters passed to the colocalise method.

    Keyword Args:
        priorc1 (float): Prior on variant being causal for trait 1. Defaults to 1e-4.
        priorc2 (float): Prior on variant being causal for trait 2. Defaults to 1e-4.
        priorc12 (float): Prior on variant being causal for traits 1 and 2. Defaults to 1e-5.

    Returns:
        Colocalisation: Colocalisation results

    Raises:
        TypeError: When passed incorrect prior argument types.
    """
    # Ensure priors are always present, even if not passed
    priorc1 = kwargs.get("priorc1") or 1e-4
    priorc2 = kwargs.get("priorc2") or 1e-4
    priorc12 = kwargs.get("priorc12") or 1e-5
    priors = [priorc1, priorc2, priorc12]
    if any(not isinstance(prior, float) for prior in priors):
        raise TypeError(
            "Passed incorrect type(s) for prior parameters. got %s",
            {type(p): p for p in priors},
        )

    # Register UDF for calculating posteriors from PIPs
    posteriors_udf = f.udf(cls._get_posteriors, VectorUDT())

    return Colocalisation(
        _df=(
            overlapping_signals.df.withColumn(
                "tagVariantSource", get_tag_variant_source(f.col("statistics"))
            )
            .select("*", "statistics.*")
            # Before processing, ensure posterior probabilities are not null
            .fillna(
                0,
                subset=[
                    "left_posteriorProbability",
                    "right_posteriorProbability",
                ],
            )
            # Group by overlapping peaks and collect PIPs as arrays
            .groupBy(
                "chromosome",
                "leftStudyLocusId",
                "rightStudyLocusId",
                "rightStudyType",
            )
            .agg(
                f.size(
                    f.filter(
                        f.collect_list(f.col("tagVariantSource")),
                        lambda x: x == "both",
                    )
                )
                .cast(t.LongType())
                .alias("numberColocalisingVariants"),
                # Collect variant IDs and PIPs for left study
                f.collect_list(f.col("tagVariantId")).alias("left_variants"),
                f.collect_list(f.col("left_posteriorProbability")).alias(
                    "left_pips"
                ),
                # Collect variant IDs and PIPs for right study
                f.collect_list(f.col("tagVariantId")).alias("right_variants"),
                f.collect_list(f.col("right_posteriorProbability")).alias(
                    "right_pips"
                ),
            )
            # Calculate posteriors using the PIP approximation
            .withColumn(
                "posteriors",
                posteriors_udf(
                    f.col("left_variants").cast("array<string>"),
                    f.col("left_pips").cast("array<double>"),
                    f.col("right_variants").cast("array<string>"),
                    f.col("right_pips").cast("array<double>"),
                    f.lit(priorc1),
                    f.lit(priorc2),
                    f.lit(priorc12),
                ),
            )
            # Extract individual hypothesis posteriors
            .withColumn("h0", fml.vector_to_array(f.col("posteriors")).getItem(0))
            .withColumn("h1", fml.vector_to_array(f.col("posteriors")).getItem(1))
            .withColumn("h2", fml.vector_to_array(f.col("posteriors")).getItem(2))
            .withColumn("h3", fml.vector_to_array(f.col("posteriors")).getItem(3))
            .withColumn("h4", fml.vector_to_array(f.col("posteriors")).getItem(4))
            # Clean up intermediate columns
            .drop(
                "posteriors",
                "left_variants",
                "left_pips",
                "right_variants",
                "right_pips",
            )
            .withColumn("colocalisationMethod", f.lit(cls.METHOD_NAME))
            .join(
                overlapping_signals.calculate_beta_ratio(),
                on=["leftStudyLocusId", "rightStudyLocusId", "chromosome"],
                how="left",
            )
        ),
        _schema=Colocalisation.get_schema(),
    )