Skip to content

L2G Trainer

gentropy.method.l2g.trainer.LocusToGeneTrainer dataclass

Modelling of what is the most likely causal gene associated with a given locus.

Source code in src/gentropy/method/l2g/trainer.py
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
@dataclass
class LocusToGeneTrainer:
    """Modelling of what is the most likely causal gene associated with a given locus."""

    model: LocusToGeneModel
    feature_matrix: L2GFeatureMatrix

    # Initialise vars
    features_list: list[str] | None = None
    label_col: str = "goldStandardSet"
    x_train: np.ndarray | None = None
    y_train: np.ndarray | None = None
    x_test: np.ndarray | None = None
    y_test: np.ndarray | None = None
    groups_train: np.ndarray | None = None
    run: Run | None = None
    wandb_l2g_project_name: str = "gentropy-locus-to-gene"

    def __post_init__(self) -> None:
        """Set default features_list to feature_matrix's features_list if not provided."""
        self.features_list = (
            self.feature_matrix.features_list
            if self.features_list is None
            else self.features_list
        )

    def fit(
        self: LocusToGeneTrainer,
    ) -> LocusToGeneModel:
        """Fit the pipeline to the feature matrix dataframe.

        Returns:
            LocusToGeneModel: Fitted model

        Raises:
            ValueError: Train data not set, nothing to fit.
        """
        if self.x_train is not None and self.y_train is not None:
            assert (
                self.x_train.size != 0 and self.y_train.size != 0
            ), "Train data not set, nothing to fit."
            fitted_model = self.model.model.fit(X=self.x_train, y=self.y_train)
            self.model = LocusToGeneModel(
                model=fitted_model,
                hyperparameters=fitted_model.get_params(),
                training_data=self.feature_matrix,
            )
            return self.model
        raise ValueError("Train data not set, nothing to fit.")

    def _get_shap_explanation(
        self: LocusToGeneTrainer,
        model: LocusToGeneModel,
    ) -> Explanation:
        """Get the SHAP values for the given model and data. We pass the full X matrix (without the labels) to interpret their shap values.

        Args:
            model (LocusToGeneModel): Model to explain.

        Returns:
                Explanation: SHAP values for the given model and data.

        Raises:
            ValueError: Train data not set, cannot get SHAP values.
            Exception: (ExplanationError) When the additivity check fails.
        """
        if self.x_train is not None and self.x_test is not None:
            training_data = pd.DataFrame(
                np.vstack((self.x_train, self.x_test)),
                columns=self.features_list,
            )
            explainer = shap.TreeExplainer(
                model.model,
                data=training_data,
                feature_perturbation="interventional",
            )
            try:
                return explainer(training_data)
            except Exception as e:
                if "Additivity check failed in TreeExplainer" in repr(e):
                    return explainer(training_data, check_additivity=False)
                else:
                    raise

        raise ValueError("Train data not set.")

    def log_plot_image_to_wandb(
        self: LocusToGeneTrainer, title: str, plot: Axes
    ) -> None:
        """Accepts a plot object, and saves the fig to PNG to then log it in W&B.

        Args:
            title (str): Title of the plot.
            plot (Axes): Shap plot to log.

        Raises:
            ValueError: Run not set, cannot log to W&B.
        """
        if self.run is None:
            raise ValueError("Run not set, cannot log to W&B.")
        if not plot:
            # Scatter plot returns none, so we need to handle this case
            plt.savefig("tmp.png", bbox_inches="tight")
        else:
            plot.figure.savefig("tmp.png", bbox_inches="tight")
        self.run.log({title: Image("tmp.png")})
        plt.close()
        os.remove("tmp.png")

    def log_to_wandb(
        self: LocusToGeneTrainer,
        wandb_run_name: str,
    ) -> None:
        """Log evaluation results and feature importance to W&B to compare between different L2G runs.

        Dashboard is available at https://wandb.ai/open-targets/gentropy-locus-to-gene?nw=nwuseropentargets
        Credentials to access W&B are available at the OT central login sheet.

        Args:
            wandb_run_name (str): Name of the W&B run

        Raises:
            RuntimeError: If dependencies are not available.
        """
        if (
            self.x_train is None
            or self.x_test is None
            or self.y_train is None
            or self.y_test is None
            or self.features_list is None
        ):
            raise RuntimeError("Train data not set, we cannot log to W&B.")
        assert (
            self.x_train.size != 0 and self.y_train.size != 0
        ), "Train data not set, nothing to evaluate."
        fitted_classifier = self.model.model
        y_predicted = fitted_classifier.predict(self.x_test)
        y_probas = fitted_classifier.predict_proba(self.x_test)
        self.run = wandb_init(
            project=self.wandb_l2g_project_name,
            name=wandb_run_name,
            config=fitted_classifier.get_params(),
        )
        # Track classification plots
        plot_classifier(
            self.model.model,
            self.x_train,
            self.x_test,
            self.y_train,
            self.y_test,
            y_predicted,
            y_probas,
            labels=list(self.model.label_encoder.values()),
            model_name="L2G-classifier",
            feature_names=self.features_list,
            is_binary=True,
        )
        # Track evaluation metrics
        self.run.log(
            {
                "areaUnderROC": roc_auc_score(
                    self.y_test, y_probas[:, 1], average="weighted"
                )
            }
        )
        self.run.log({"accuracy": accuracy_score(self.y_test, y_predicted)})
        self.run.log(
            {
                "weightedPrecision": precision_score(
                    self.y_test, y_predicted, average="weighted"
                )
            }
        )
        self.run.log(
            {
                "averagePrecision": average_precision_score(
                    self.y_test, y_predicted, average="weighted"
                )
            }
        )
        self.run.log(
            {
                "weightedRecall": recall_score(
                    self.y_test, y_predicted, average="weighted"
                )
            }
        )
        self.run.log({"f1": f1_score(self.y_test, y_predicted, average="weighted")})
        # Track gold standards and their features
        self.run.log(
            {"featureMatrix": Table(dataframe=self.feature_matrix._df.toPandas())}
        )
        # Log feature missingness
        self.run.log(
            {
                "missingnessRates": self.feature_matrix.calculate_feature_missingness_rate()
            }
        )
        # Plot marginal contribution of each feature
        explanation = self._get_shap_explanation(self.model)
        self.log_plot_image_to_wandb(
            "Feature Contribution",
            shap.plots.bar(
                explanation, max_display=len(self.features_list), show=False
            ),
        )
        self.log_plot_image_to_wandb(
            "Beeswarm Plot",
            shap.plots.beeswarm(
                explanation, max_display=len(self.features_list), show=False
            ),
        )
        # Plot correlation between feature values and their importance
        for feature in self.features_list:
            self.log_plot_image_to_wandb(
                f"Effect of {feature} on the predictions",
                shap.plots.scatter(
                    explanation[:, feature],
                    show=False,
                ),
            )
        wandb_termlog("Logged Shapley contributions.")
        self.run.finish()

    def train(
        self: LocusToGeneTrainer,
        wandb_run_name: str,
        cross_validate: bool = True,
        n_splits: int = 5,
        hyperparameter_grid: dict[str, Any] | None = None,
    ) -> LocusToGeneModel:
        """Train the Locus to Gene model.

        If cross_validation is set to True, we implement the following strategy:
            1. Create held-out test set
            2. Perform cross-validation on training set
            3. Train final model on full training set
            4. Evaluate once on test set

        Args:
            wandb_run_name (str): Name of the W&B run. Unless this is provided, the model will not be logged to W&B.
            cross_validate (bool): Whether to run cross-validation. Defaults to True.
            n_splits(int): Number of folds the data is splitted in. The model is trained and evaluated `k - 1` times. Defaults to 5.
            hyperparameter_grid (dict[str, Any] | None): Hyperparameter grid to sweep over. Defaults to None.

        Returns:
            LocusToGeneModel: Fitted model
        """
        data_df = self.feature_matrix._df.toPandas()
        # enforce that data_df is a Pandas DataFrame

        # Encode labels in `goldStandardSet` to a numeric value
        data_df[self.label_col] = data_df[self.label_col].map(self.model.label_encoder)

        X = data_df[self.features_list].apply(pd.to_numeric).values
        y = data_df[self.label_col].apply(pd.to_numeric).values
        gene_trait_groups = (
            data_df["traitFromSourceMappedId"].astype(str)
            + "_"
            + data_df["geneId"].astype(str)
        )  # Group identifier has to be a single string

        # Create hold-out test set separating EFO/Gene pairs between train/test
        train_test_split = GroupShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
        for train_idx, test_idx in train_test_split.split(X, y, gene_trait_groups):
            self.x_train, self.x_test = X[train_idx], X[test_idx]
            self.y_train, self.y_test = y[train_idx], y[test_idx]
            self.groups_train = gene_trait_groups[train_idx]

        # Cross-validation
        if cross_validate:
            self.cross_validate(
                wandb_run_name=f"{wandb_run_name}-cv",
                parameter_grid=hyperparameter_grid,
                n_splits=n_splits,
            )

        # Train final model on full training set
        self.fit()

        # Evaluate once on hold out test set
        self.log_to_wandb(
            wandb_run_name=f"{wandb_run_name}-holdout",
        )

        return self.model

    def cross_validate(
        self: LocusToGeneTrainer,
        wandb_run_name: str,
        parameter_grid: dict[str, Any] | None = None,
        n_splits: int = 5,
    ) -> None:
        """Log results of cross validation and hyperparameter tuning with W&B Sweeps. Metrics for every combination of hyperparameters will be logged to W&B for comparison.

        Args:
            wandb_run_name (str): Name of the W&B run
            parameter_grid (dict[str, Any] | None): Dictionary containing the hyperparameters to sweep over. The keys are the hyperparameter names, and the values are dictionaries containing the values to sweep over.
            n_splits (int): Number of folds the data is splitted in. The model is trained and evaluated `k - 1` times. Defaults to 5.
        """

        def cross_validate_single_fold(
            fold_index: int,
            sweep_id: str,
            sweep_run_name: str,
            config: dict[str, Any],
        ) -> None:
            """Run cross-validation for a single fold.

            Args:
                fold_index (int): Index of the fold to run
                sweep_id (str): ID of the sweep
                sweep_run_name (str): Name of the sweep run
                config (dict[str, Any]): Configuration from the sweep

            Raises:
                ValueError: If training data is not set
            """
            reset_wandb_env()
            train_idx, val_idx = cv_splits[fold_index]

            if (
                self.x_train is None
                or self.y_train is None
                or self.groups_train is None
            ):
                raise ValueError("Training data not set")

            # Initialize a new run for this fold
            os.environ["WANDB_SWEEP_ID"] = sweep_id
            run = wandb_init(
                project=self.wandb_l2g_project_name,
                name=sweep_run_name,
                config=config,
                group=sweep_run_name,
                job_type="fold",
                reinit=True,
            )

            x_fold_train, x_fold_val = (
                self.x_train[train_idx],
                self.x_train[val_idx],
            )
            y_fold_train, y_fold_val = (
                self.y_train[train_idx],
                self.y_train[val_idx],
            )

            fold_model = clone(self.model.model)
            fold_model.set_params(**config)
            fold_model.fit(x_fold_train, y_fold_train)
            y_pred_proba = fold_model.predict_proba(x_fold_val)[:, 1]
            y_pred = (y_pred_proba >= 0.5).astype(int)

            # Log metrics
            metrics = {
                "weightedPrecision": precision_score(y_fold_val, y_pred),
                "averagePrecision": average_precision_score(y_fold_val, y_pred_proba),
                "areaUnderROC": roc_auc_score(y_fold_val, y_pred_proba),
                "accuracy": accuracy_score(y_fold_val, y_pred),
                "weightedRecall": recall_score(y_fold_val, y_pred, average="weighted"),
                "f1": f1_score(y_fold_val, y_pred, average="weighted"),
            }

            run.log(metrics)
            wandb_termlog(f"Logged metrics for fold {fold_index + 1}.")
            run.finish()

        # If no grid is provided, use default ones set in the model
        parameter_grid = parameter_grid or {
            param: {"values": [value]}
            for param, value in self.model.hyperparameters.items()
        }
        sweep_config = {
            "method": "grid",
            "name": wandb_run_name,  # Add name to sweep config
            "metric": {"name": "areaUnderROC", "goal": "maximize"},
            "parameters": parameter_grid,
        }
        sweep_id = wandb_sweep(sweep_config, project=self.wandb_l2g_project_name)

        gkf = GroupKFold(n_splits=n_splits)
        cv_splits = list(gkf.split(self.x_train, self.y_train, self.groups_train))

        def run_all_folds() -> None:
            """Run cross-validation for all folds within a sweep."""
            # Initialize the sweep run and get metadata
            sweep_run = wandb_init(name=wandb_run_name)
            sweep_id = sweep_run.sweep_id or "unknown"
            sweep_url = sweep_run.get_sweep_url()
            project_url = sweep_run.get_project_url()
            sweep_group_url = f"{project_url}/groups/{sweep_id}"
            sweep_run.notes = sweep_group_url
            sweep_run.save()
            config = dict(sweep_run.config)

            # Reset wandb setup to ensure clean state
            _setup(_reset=True)

            # Run all folds
            for fold_index in range(len(cv_splits)):
                cross_validate_single_fold(
                    fold_index=fold_index,
                    sweep_id=sweep_id,
                    sweep_run_name=f"{wandb_run_name}-fold{fold_index+1}",
                    config=config,
                )

            wandb_termlog(f"Sweep URL: {sweep_url}")
            wandb_termlog(f"Sweep Group URL: {sweep_group_url}")

        wandb_agent(sweep_id, run_all_folds)

cross_validate(wandb_run_name: str, parameter_grid: dict[str, Any] | None = None, n_splits: int = 5) -> None

Log results of cross validation and hyperparameter tuning with W&B Sweeps. Metrics for every combination of hyperparameters will be logged to W&B for comparison.

Parameters:

Name Type Description Default
wandb_run_name str

Name of the W&B run

required
parameter_grid dict[str, Any] | None

Dictionary containing the hyperparameters to sweep over. The keys are the hyperparameter names, and the values are dictionaries containing the values to sweep over.

None
n_splits int

Number of folds the data is splitted in. The model is trained and evaluated k - 1 times. Defaults to 5.

5
Source code in src/gentropy/method/l2g/trainer.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
def cross_validate(
    self: LocusToGeneTrainer,
    wandb_run_name: str,
    parameter_grid: dict[str, Any] | None = None,
    n_splits: int = 5,
) -> None:
    """Log results of cross validation and hyperparameter tuning with W&B Sweeps. Metrics for every combination of hyperparameters will be logged to W&B for comparison.

    Args:
        wandb_run_name (str): Name of the W&B run
        parameter_grid (dict[str, Any] | None): Dictionary containing the hyperparameters to sweep over. The keys are the hyperparameter names, and the values are dictionaries containing the values to sweep over.
        n_splits (int): Number of folds the data is splitted in. The model is trained and evaluated `k - 1` times. Defaults to 5.
    """

    def cross_validate_single_fold(
        fold_index: int,
        sweep_id: str,
        sweep_run_name: str,
        config: dict[str, Any],
    ) -> None:
        """Run cross-validation for a single fold.

        Args:
            fold_index (int): Index of the fold to run
            sweep_id (str): ID of the sweep
            sweep_run_name (str): Name of the sweep run
            config (dict[str, Any]): Configuration from the sweep

        Raises:
            ValueError: If training data is not set
        """
        reset_wandb_env()
        train_idx, val_idx = cv_splits[fold_index]

        if (
            self.x_train is None
            or self.y_train is None
            or self.groups_train is None
        ):
            raise ValueError("Training data not set")

        # Initialize a new run for this fold
        os.environ["WANDB_SWEEP_ID"] = sweep_id
        run = wandb_init(
            project=self.wandb_l2g_project_name,
            name=sweep_run_name,
            config=config,
            group=sweep_run_name,
            job_type="fold",
            reinit=True,
        )

        x_fold_train, x_fold_val = (
            self.x_train[train_idx],
            self.x_train[val_idx],
        )
        y_fold_train, y_fold_val = (
            self.y_train[train_idx],
            self.y_train[val_idx],
        )

        fold_model = clone(self.model.model)
        fold_model.set_params(**config)
        fold_model.fit(x_fold_train, y_fold_train)
        y_pred_proba = fold_model.predict_proba(x_fold_val)[:, 1]
        y_pred = (y_pred_proba >= 0.5).astype(int)

        # Log metrics
        metrics = {
            "weightedPrecision": precision_score(y_fold_val, y_pred),
            "averagePrecision": average_precision_score(y_fold_val, y_pred_proba),
            "areaUnderROC": roc_auc_score(y_fold_val, y_pred_proba),
            "accuracy": accuracy_score(y_fold_val, y_pred),
            "weightedRecall": recall_score(y_fold_val, y_pred, average="weighted"),
            "f1": f1_score(y_fold_val, y_pred, average="weighted"),
        }

        run.log(metrics)
        wandb_termlog(f"Logged metrics for fold {fold_index + 1}.")
        run.finish()

    # If no grid is provided, use default ones set in the model
    parameter_grid = parameter_grid or {
        param: {"values": [value]}
        for param, value in self.model.hyperparameters.items()
    }
    sweep_config = {
        "method": "grid",
        "name": wandb_run_name,  # Add name to sweep config
        "metric": {"name": "areaUnderROC", "goal": "maximize"},
        "parameters": parameter_grid,
    }
    sweep_id = wandb_sweep(sweep_config, project=self.wandb_l2g_project_name)

    gkf = GroupKFold(n_splits=n_splits)
    cv_splits = list(gkf.split(self.x_train, self.y_train, self.groups_train))

    def run_all_folds() -> None:
        """Run cross-validation for all folds within a sweep."""
        # Initialize the sweep run and get metadata
        sweep_run = wandb_init(name=wandb_run_name)
        sweep_id = sweep_run.sweep_id or "unknown"
        sweep_url = sweep_run.get_sweep_url()
        project_url = sweep_run.get_project_url()
        sweep_group_url = f"{project_url}/groups/{sweep_id}"
        sweep_run.notes = sweep_group_url
        sweep_run.save()
        config = dict(sweep_run.config)

        # Reset wandb setup to ensure clean state
        _setup(_reset=True)

        # Run all folds
        for fold_index in range(len(cv_splits)):
            cross_validate_single_fold(
                fold_index=fold_index,
                sweep_id=sweep_id,
                sweep_run_name=f"{wandb_run_name}-fold{fold_index+1}",
                config=config,
            )

        wandb_termlog(f"Sweep URL: {sweep_url}")
        wandb_termlog(f"Sweep Group URL: {sweep_group_url}")

    wandb_agent(sweep_id, run_all_folds)

fit() -> LocusToGeneModel

Fit the pipeline to the feature matrix dataframe.

Returns:

Name Type Description
LocusToGeneModel LocusToGeneModel

Fitted model

Raises:

Type Description
ValueError

Train data not set, nothing to fit.

Source code in src/gentropy/method/l2g/trainer.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
def fit(
    self: LocusToGeneTrainer,
) -> LocusToGeneModel:
    """Fit the pipeline to the feature matrix dataframe.

    Returns:
        LocusToGeneModel: Fitted model

    Raises:
        ValueError: Train data not set, nothing to fit.
    """
    if self.x_train is not None and self.y_train is not None:
        assert (
            self.x_train.size != 0 and self.y_train.size != 0
        ), "Train data not set, nothing to fit."
        fitted_model = self.model.model.fit(X=self.x_train, y=self.y_train)
        self.model = LocusToGeneModel(
            model=fitted_model,
            hyperparameters=fitted_model.get_params(),
            training_data=self.feature_matrix,
        )
        return self.model
    raise ValueError("Train data not set, nothing to fit.")

log_plot_image_to_wandb(title: str, plot: Axes) -> None

Accepts a plot object, and saves the fig to PNG to then log it in W&B.

Parameters:

Name Type Description Default
title str

Title of the plot.

required
plot Axes

Shap plot to log.

required

Raises:

Type Description
ValueError

Run not set, cannot log to W&B.

Source code in src/gentropy/method/l2g/trainer.py
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def log_plot_image_to_wandb(
    self: LocusToGeneTrainer, title: str, plot: Axes
) -> None:
    """Accepts a plot object, and saves the fig to PNG to then log it in W&B.

    Args:
        title (str): Title of the plot.
        plot (Axes): Shap plot to log.

    Raises:
        ValueError: Run not set, cannot log to W&B.
    """
    if self.run is None:
        raise ValueError("Run not set, cannot log to W&B.")
    if not plot:
        # Scatter plot returns none, so we need to handle this case
        plt.savefig("tmp.png", bbox_inches="tight")
    else:
        plot.figure.savefig("tmp.png", bbox_inches="tight")
    self.run.log({title: Image("tmp.png")})
    plt.close()
    os.remove("tmp.png")

log_to_wandb(wandb_run_name: str) -> None

Log evaluation results and feature importance to W&B to compare between different L2G runs.

Dashboard is available at https://wandb.ai/open-targets/gentropy-locus-to-gene?nw=nwuseropentargets Credentials to access W&B are available at the OT central login sheet.

Parameters:

Name Type Description Default
wandb_run_name str

Name of the W&B run

required

Raises:

Type Description
RuntimeError

If dependencies are not available.

Source code in src/gentropy/method/l2g/trainer.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def log_to_wandb(
    self: LocusToGeneTrainer,
    wandb_run_name: str,
) -> None:
    """Log evaluation results and feature importance to W&B to compare between different L2G runs.

    Dashboard is available at https://wandb.ai/open-targets/gentropy-locus-to-gene?nw=nwuseropentargets
    Credentials to access W&B are available at the OT central login sheet.

    Args:
        wandb_run_name (str): Name of the W&B run

    Raises:
        RuntimeError: If dependencies are not available.
    """
    if (
        self.x_train is None
        or self.x_test is None
        or self.y_train is None
        or self.y_test is None
        or self.features_list is None
    ):
        raise RuntimeError("Train data not set, we cannot log to W&B.")
    assert (
        self.x_train.size != 0 and self.y_train.size != 0
    ), "Train data not set, nothing to evaluate."
    fitted_classifier = self.model.model
    y_predicted = fitted_classifier.predict(self.x_test)
    y_probas = fitted_classifier.predict_proba(self.x_test)
    self.run = wandb_init(
        project=self.wandb_l2g_project_name,
        name=wandb_run_name,
        config=fitted_classifier.get_params(),
    )
    # Track classification plots
    plot_classifier(
        self.model.model,
        self.x_train,
        self.x_test,
        self.y_train,
        self.y_test,
        y_predicted,
        y_probas,
        labels=list(self.model.label_encoder.values()),
        model_name="L2G-classifier",
        feature_names=self.features_list,
        is_binary=True,
    )
    # Track evaluation metrics
    self.run.log(
        {
            "areaUnderROC": roc_auc_score(
                self.y_test, y_probas[:, 1], average="weighted"
            )
        }
    )
    self.run.log({"accuracy": accuracy_score(self.y_test, y_predicted)})
    self.run.log(
        {
            "weightedPrecision": precision_score(
                self.y_test, y_predicted, average="weighted"
            )
        }
    )
    self.run.log(
        {
            "averagePrecision": average_precision_score(
                self.y_test, y_predicted, average="weighted"
            )
        }
    )
    self.run.log(
        {
            "weightedRecall": recall_score(
                self.y_test, y_predicted, average="weighted"
            )
        }
    )
    self.run.log({"f1": f1_score(self.y_test, y_predicted, average="weighted")})
    # Track gold standards and their features
    self.run.log(
        {"featureMatrix": Table(dataframe=self.feature_matrix._df.toPandas())}
    )
    # Log feature missingness
    self.run.log(
        {
            "missingnessRates": self.feature_matrix.calculate_feature_missingness_rate()
        }
    )
    # Plot marginal contribution of each feature
    explanation = self._get_shap_explanation(self.model)
    self.log_plot_image_to_wandb(
        "Feature Contribution",
        shap.plots.bar(
            explanation, max_display=len(self.features_list), show=False
        ),
    )
    self.log_plot_image_to_wandb(
        "Beeswarm Plot",
        shap.plots.beeswarm(
            explanation, max_display=len(self.features_list), show=False
        ),
    )
    # Plot correlation between feature values and their importance
    for feature in self.features_list:
        self.log_plot_image_to_wandb(
            f"Effect of {feature} on the predictions",
            shap.plots.scatter(
                explanation[:, feature],
                show=False,
            ),
        )
    wandb_termlog("Logged Shapley contributions.")
    self.run.finish()

train(wandb_run_name: str, cross_validate: bool = True, n_splits: int = 5, hyperparameter_grid: dict[str, Any] | None = None) -> LocusToGeneModel

Train the Locus to Gene model.

If cross_validation is set to True, we implement the following strategy: 1. Create held-out test set 2. Perform cross-validation on training set 3. Train final model on full training set 4. Evaluate once on test set

Parameters:

Name Type Description Default
wandb_run_name str

Name of the W&B run. Unless this is provided, the model will not be logged to W&B.

required
cross_validate bool

Whether to run cross-validation. Defaults to True.

True
n_splits(int)

Number of folds the data is splitted in. The model is trained and evaluated k - 1 times. Defaults to 5.

required
hyperparameter_grid dict[str, Any] | None

Hyperparameter grid to sweep over. Defaults to None.

None

Returns:

Name Type Description
LocusToGeneModel LocusToGeneModel

Fitted model

Source code in src/gentropy/method/l2g/trainer.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def train(
    self: LocusToGeneTrainer,
    wandb_run_name: str,
    cross_validate: bool = True,
    n_splits: int = 5,
    hyperparameter_grid: dict[str, Any] | None = None,
) -> LocusToGeneModel:
    """Train the Locus to Gene model.

    If cross_validation is set to True, we implement the following strategy:
        1. Create held-out test set
        2. Perform cross-validation on training set
        3. Train final model on full training set
        4. Evaluate once on test set

    Args:
        wandb_run_name (str): Name of the W&B run. Unless this is provided, the model will not be logged to W&B.
        cross_validate (bool): Whether to run cross-validation. Defaults to True.
        n_splits(int): Number of folds the data is splitted in. The model is trained and evaluated `k - 1` times. Defaults to 5.
        hyperparameter_grid (dict[str, Any] | None): Hyperparameter grid to sweep over. Defaults to None.

    Returns:
        LocusToGeneModel: Fitted model
    """
    data_df = self.feature_matrix._df.toPandas()
    # enforce that data_df is a Pandas DataFrame

    # Encode labels in `goldStandardSet` to a numeric value
    data_df[self.label_col] = data_df[self.label_col].map(self.model.label_encoder)

    X = data_df[self.features_list].apply(pd.to_numeric).values
    y = data_df[self.label_col].apply(pd.to_numeric).values
    gene_trait_groups = (
        data_df["traitFromSourceMappedId"].astype(str)
        + "_"
        + data_df["geneId"].astype(str)
    )  # Group identifier has to be a single string

    # Create hold-out test set separating EFO/Gene pairs between train/test
    train_test_split = GroupShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
    for train_idx, test_idx in train_test_split.split(X, y, gene_trait_groups):
        self.x_train, self.x_test = X[train_idx], X[test_idx]
        self.y_train, self.y_test = y[train_idx], y[test_idx]
        self.groups_train = gene_trait_groups[train_idx]

    # Cross-validation
    if cross_validate:
        self.cross_validate(
            wandb_run_name=f"{wandb_run_name}-cv",
            parameter_grid=hyperparameter_grid,
            n_splits=n_splits,
        )

    # Train final model on full training set
    self.fit()

    # Evaluate once on hold out test set
    self.log_to_wandb(
        wandb_run_name=f"{wandb_run_name}-holdout",
    )

    return self.model