QC of GWAS Summary Statistics
This class consists of several general quality control checks for GWAS with full summary statistics. There are several checks included:
-
Genomic control lambda (median of the distribution of Chi2 statistics divided by expected for Chi2 with df=1). Lambda should be reasonably close to 1. Ideally not bigger than 2.
-
P-Z check: the linear regression between log10 of reported p-values and log10 of p-values inferred from betas and standard errors. Intercept of the regression should be close to 0, slope close to 1.
-
Mean beta check: mean of beta. Should be close to 0.
-
The N_eff check: It estimates the ratio between effective sample size and the expected one and checks its distribution. It is possible to conduct only if the effective allele frequency is provided in the study. The median ratio is always close to 1, standard error should be close to 0.
-
Number of SNPs and number of significant SNPs.
Summary Statistics QC checks¶
gentropy.method.sumstat_quality_controls.gc_lambda_check(gwas_for_qc: DataFrame) -> DataFrame
¶
The genomic control lambda check for QC of GWAS summary statistics.
The genomic control lambda is a measure of the inflation of test statistics in a GWAS. It is calculated as the ratio of the median of the squared test statistics to the expected median under the null hypothesis. The expected median under the null hypothesis is calculated using the chi-squared distribution with 1 degree of freedom.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gwas_for_qc
|
DataFrame
|
Dataframe with |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
PySpark DataFrame with the genomic control lambda for each study. |
Warning
High lambda values indicate inflation of test statistics, which may be due to the population stratification or other confounding factors.
Examples:
>>> s = 'studyId STRING, beta DOUBLE, standardError DOUBLE'
>>> d1 = [("S1", 1.81, 0.2), ("S1", -0.1, 0.2)]
>>> d2 = [("S2", 1.0, 0.1), ("S2", 1.0, 0.1)]
>>> df = spark.createDataFrame(d1 + d2, s)
>>> df.show()
+-------+----+-------------+
|studyId|beta|standardError|
+-------+----+-------------+
| S1|1.81| 0.2|
| S1|-0.1| 0.2|
| S2| 1.0| 0.1|
| S2| 1.0| 0.1|
+-------+----+-------------+
This method outputs one value per study
>>> gc_lambda = f.round("gc_lambda", 2).alias("gc_lambda")
>>> gc_lambda_check(df).select("studyId", gc_lambda).show()
+-------+---------+
|studyId|gc_lambda|
+-------+---------+
| S1| 0.55|
| S2| 219.81|
+-------+---------+
Source code in src/gentropy/method/sumstat_quality_controls.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
gentropy.method.sumstat_quality_controls.p_z_test(gwas_for_qc: DataFrame) -> DataFrame
¶
The P-Z test for QC of GWAS summary statistics.
This function expects to have a dataframe with studyId
, beta
, standardError
, pValueMantissa
and pValueExponent
columns
It runs linear regression between reported p-values and p-values inferred from z-scores.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gwas_for_qc
|
DataFrame
|
Dataframe with |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
PySpark DataFrame with the results of the linear regression for each study. |
Note
The algorithm does following things: 1. recalculates the negative logarithm of p-value from the square z-score 2. calculates the mean and se difference between the sum of logarithms derived form reported p-value mantissa and exponent and value recalculated from z-score.
Warning
The function requires the calculation of the chi-squared survival function to obtain the p-value from the z-score. which is not available in PySpark. The function uses scipy instead, thus it is not optimized for large datasets.
Examples:
>>> s = 'studyId STRING, beta DOUBLE, standardError DOUBLE, pValueMantissa FLOAT, pValueExponent INTEGER'
>>> # Example where the variant reaches upper and lower boundaries for mantissa and upper bound for exponent
>>> d1 = [("S1", 1.81, 0.2, 9.9, -20), ("S1", -0.1, 0.2, 1.0, -1)]
>>> # Example where z-score^2 (beta / se) > 100
>>> d2 = [("S2", 101.0, 10.0, 1.0, -1), ("S2", 1.0, 0.1, 1.0, -1), ("S2", 1.0, 0.1, 2.0, -2)]
>>> df = spark.createDataFrame(d1 + d2, s)
>>> df.show()
+-------+-----+-------------+--------------+--------------+
|studyId| beta|standardError|pValueMantissa|pValueExponent|
+-------+-----+-------------+--------------+--------------+
| S1| 1.81| 0.2| 9.9| -20|
| S1| -0.1| 0.2| 1.0| -1|
| S2|101.0| 10.0| 1.0| -1|
| S2| 1.0| 0.1| 1.0| -1|
| S2| 1.0| 0.1| 2.0| -2|
+-------+-----+-------------+--------------+--------------+
This method outputs two values per study, mean and standard deviation of the difference between log p-value(s)
>>> mean_diff_pz = f.round("mean_diff_pz", 2).alias("mean_diff_pz")
>>> se_diff_pz = f.round("se_diff_pz", 2).alias("se_diff_pz")
>>> p_z_test(df).select('studyId', mean_diff_pz, se_diff_pz).show()
+-------+------------+----------+
|studyId|mean_diff_pz|se_diff_pz|
+-------+------------+----------+
| S1| 0.47| 0.45|
| S2| -21.47| 0.49|
+-------+------------+----------+
Source code in src/gentropy/method/sumstat_quality_controls.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
gentropy.method.sumstat_quality_controls.mean_beta_check(gwas_for_qc: DataFrame) -> DataFrame
¶
The mean beta check for QC of GWAS summary statistics.
This function expects to have a dataframe with studyId
and beta
columns and
outputs the dataframe with mean beta aggregated over the studyId.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gwas_for_qc
|
DataFrame
|
Dataframe with |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
PySpark DataFrame with the mean beta for each study. |
Examples:
>>> s = "studyId STRING, variantId STRING, beta DOUBLE"
>>> df = spark.createDataFrame([('S1', '1_10000_A_T', 1.0), ('S1', '1_10001_C_T', 1.0), ('S2', '1_10001_C_T', 0.028)], schema=s)
>>> df.show()
+-------+-----------+-----+
|studyId| variantId| beta|
+-------+-----------+-----+
| S1|1_10000_A_T| 1.0|
| S1|1_10001_C_T| 1.0|
| S2|1_10001_C_T|0.028|
+-------+-----------+-----+
This method outputs one value per study
>>> mean_beta = f.round("mean_beta", 3).alias("mean_beta")
>>> mean_beta_check(df).select('studyId', mean_beta).show()
+-------+---------+
|studyId|mean_beta|
+-------+---------+
| S1| 1.0|
| S2| 0.028|
+-------+---------+
Source code in src/gentropy/method/sumstat_quality_controls.py
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
gentropy.method.sumstat_quality_controls.sumstat_n_eff_check(gwas_for_qc: DataFrame, n_total: int = 100000, limit: int = 10000000, min_count: int = 100) -> DataFrame
¶
The effective sample size check for QC of GWAS summary statistics.
It estimates the ratio between effective sample size and the expected one and checks it's distribution. It is possible to conduct only if the effective allele frequency is provided in the study. The median ratio is always close to 1, but standard error could be inflated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gwas_for_qc
|
DataFrame
|
Dataframe with |
required |
n_total
|
int
|
The reported sample size of the study. The QC metrics is robust toward the sample size. |
100000
|
limit
|
int
|
The limit for the number of variants to be used for the estimation. |
10000000
|
min_count
|
int
|
The minimum number of variants to be used for the estimation. |
100
|
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
PySpark DataFrame with the effective sample size ratio for each study. |
Examples:
>>> s = 'studyId STRING, beta DOUBLE, standardError DOUBLE, effectAlleleFrequencyFromSource FLOAT'
>>> # Example where we have a very common and very rare variant
>>> d1 = [("S1", 1.81, 0.2, 0.999), ("S1", -0.1, 0.2, 0.001), ("S1", 1.0, 0.1, 0.5)]
>>> # Example where z-score^2 (beta / se) > 100
>>> d2 = [("S2", 1.81, 0.2, None), ("S2", 1.0, 0.1, 0.5), ("S2", 1.0, 0.1, 0.5)]
>>> df = spark.createDataFrame(d1 + d2, s)
>>> df.show()
+-------+----+-------------+-------------------------------+
|studyId|beta|standardError|effectAlleleFrequencyFromSource|
+-------+----+-------------+-------------------------------+
| S1|1.81| 0.2| 0.999|
| S1|-0.1| 0.2| 0.001|
| S1| 1.0| 0.1| 0.5|
| S2|1.81| 0.2| NULL|
| S2| 1.0| 0.1| 0.5|
| S2| 1.0| 0.1| 0.5|
+-------+----+-------------+-------------------------------+
This method outputs one value per study
>>> se_n = f.round("se_N", 2)
>>> sumstat_n_eff_check(df, min_count=2, limit=2).select("studyId", se_n).show()
+-------+--------------+
|studyId|round(se_N, 2)|
+-------+--------------+
| S1| 0.0|
| S2| 0.0|
+-------+--------------+
Source code in src/gentropy/method/sumstat_quality_controls.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
|
gentropy.method.sumstat_quality_controls.number_of_variants(gwas_for_qc: DataFrame, pval_threshold: float = 5e-08) -> DataFrame
¶
The function calculates number of SNPs and number of SNPs with p-value less than the threshold (default to 5e-8).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gwas_for_qc
|
DataFrame
|
Dataframe with |
required |
pval_threshold
|
float
|
The threshold for the p-value. |
5e-08
|
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
PySpark DataFrame with the number of SNPs and number of SNPs with p-value less than threshold. |
Examples:
>>> s = 'studyId STRING, variantId STRING, pValueMantissa FLOAT, pValueExponent INTEGER'
>>> d1 = [("S1", "1_10000_A_T", 9.9, -20), ("S1", "1_10001_C_T", 1.0, -1), ("S1", "1_10002_G_C", 5.0, -8)]
>>> d2 = [("S2", "1_10001_C_T", 1.0, -1), ("S2", "1_10002_G_C", 2.0, -2)]
>>> df = spark.createDataFrame(d1 + d2, s)
>>> df.show()
+-------+-----------+--------------+--------------+
|studyId| variantId|pValueMantissa|pValueExponent|
+-------+-----------+--------------+--------------+
| S1|1_10000_A_T| 9.9| -20|
| S1|1_10001_C_T| 1.0| -1|
| S1|1_10002_G_C| 5.0| -8|
| S2|1_10001_C_T| 1.0| -1|
| S2|1_10002_G_C| 2.0| -2|
+-------+-----------+--------------+--------------+
This method outputs two values per study n_variants_sig
and n_variants
>>> number_of_variants(df).show()
+-------+----------+--------------+
|studyId|n_variants|n_variants_sig|
+-------+----------+--------------+
| S1| 3| 2|
| S2| 2| 0|
+-------+----------+--------------+
Source code in src/gentropy/method/sumstat_quality_controls.py
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
|
Helper functions¶
gentropy.common.utils.neglogpval_from_z2(z2: float) -> float
¶
Calculate negative log10 of p-value from squared Z-score following chi2 distribution.
The Z-score^2 is equal to the chi2 with 1 degree of freedom.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
z2
|
float
|
Z-score squared. |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
negative log of p-value. |
Examples:
>>> round(neglogpval_from_z2(1.0),2)
0.5
>>> round(neglogpval_from_z2(2000),2)
436.02
Source code in src/gentropy/common/utils.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|
gentropy.method.sumstat_quality_controls.genotypic_variance(af: Column) -> Column
¶
Calculate the genotypic variance of biallelic SNP.
The genotypic variance of a biallelic SNP refers to the statistical variance in the genotype values across individuals in a population, where the SNP has two alleles, Var(G) tells us how much individuals’ genotypes deviate from the average number of minor alleles E[G].
Note
The formula is derived from Hardy-Weinberg Equilibrium
where
* 0 = Homozygous major (AA), Pr(G=0)=(1−f)^2
* 1 = Heterozygous (Aa), Pr(G=1)=2f(1-f)
* 2 = Homozygous minor (aa). Pr(G=2)=f^2
Total genotypic variance of biallelic SNP is:
Var(G) = E[G^2] - (E[G])^2
E[G] - expected value - average number of copies of the minor allele in the population at a specific biallelic SNP.
E[G] = sum(Pr(G) * G)
E[G^2] = sum((Pr(G) * G)^2)
E[G^2] = (Pr(G=0) * 0^2) + (Pr(G=1) * 1^2) + (Pr(G=2) * 2^2)
E[G^2] = 2f(1-f) + 4f^2
(E[G])^2 = (sum(Pr(G) * G)^2
(E[G])^2 = ((1−f)^2 * 0 + 2f(1-f) * 1 + f^2 * 2)^2
(E[G])^2 = (0 + 2f(1-f) + 2f^2)^2
(E[G])^2 = (2f - 2f^2 + 2f^2)^2
(E[G])^2 = 4f^2
Calculate the variance of minor allele
Var(G) = E[G^2] - (E[G])^2
Var(G) = 2f(1-f) + 4f^2 - 4f^2
Var(G) = 2f(1-f)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
af
|
Column
|
Allele frequency. |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
Column varG with genotypic variance. |
Examples:
>>> s = 'variantId STRING, alleleFrequency FLOAT'
>>> d = [('1_10001_C_T', 0.01), ('1_10002_G_C', 0.50), ('1_10003_A_T', 0.99)]
>>> df = spark.createDataFrame(d, s)
>>> var_g = f.round(genotypic_variance(f.col('alleleFrequency')), 2).alias('varG')
>>> df.select('variantId', 'alleleFrequency', var_g).show()
+-----------+---------------+----+
| variantId|alleleFrequency|varG|
+-----------+---------------+----+
|1_10001_C_T| 0.01|0.02|
|1_10002_G_C| 0.5| 0.5|
|1_10003_A_T| 0.99|0.02|
+-----------+---------------+----+
Source code in src/gentropy/method/sumstat_quality_controls.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
|