Skip to content

SuSiE-inf - Fine-mapping with infinitesimal effects v1.1

This is an implementation of the SuSiE-inf method found here: https://github.com/FinucaneLab/fine-mapping-inf https://www.nature.com/articles/s41588-023-01597-3

This fine-mapping approach has two approaches for updating estimates of the variance components - Method of Moments and Maximum Likelihood Estimator ('MoM' / 'MLE') The function takes an array of Z-scores and a numpy array matrix of variant LD to perform finemapping.

gentropy.method.susie_inf.SUSIE_inf dataclass

SuSiE fine-mapping of a study locus from fine-mapping-inf package.

Note: code copied from fine-mapping-inf package as a placeholder https://github.com/FinucaneLab/fine-mapping-inf

Raises:

Type Description
RuntimeError

if missing LD or if unsupported variance estimation

Source code in src/gentropy/method/susie_inf.py
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
@dataclass
class SUSIE_inf:
    """SuSiE fine-mapping of a study locus from fine-mapping-inf package.

    Note: code copied from fine-mapping-inf package as a placeholder
    https://github.com/FinucaneLab/fine-mapping-inf

    Raises:
        RuntimeError: if missing LD or if unsupported variance estimation
    """

    @staticmethod
    def susie_inf(  # noqa: C901
        z: np.ndarray,
        meansq: float = 1,
        n: int = 100000,
        L: int = 10,
        LD: np.ndarray | None = None,
        V: np.ndarray | None = None,
        Dsq: np.ndarray | None = None,
        est_ssq: bool = True,
        ssq: np.ndarray | None = None,
        ssq_range: tuple[float, float] = (0, 1),
        pi0: np.ndarray | None = None,
        est_sigmasq: bool = True,
        est_tausq: bool = False,
        sigmasq: float = 1,
        tausq: float = 0,
        sigmasq_range: tuple[float, float] | None = None,
        tausq_range: tuple[float, float] | None = None,
        PIP: np.ndarray | None = None,
        mu: np.ndarray | None = None,
        method: str = "moments",
        maxiter: int = 100,
        PIP_tol: float = 0.001,
    ) -> dict[str, Any]:
        """Susie with random effects.

        Args:
            z (np.ndarray): vector of z-scores (equal to X'y/sqrt(n))
            meansq (float): average squared magnitude of y (equal to ||y||^2/n)
            n (int): sample size
            L (int): number of modeled causal effects
            LD (np.ndarray | None): LD matrix (equal to X'X/n)
            V (np.ndarray | None): precomputed p x p matrix of eigenvectors of X'X
            Dsq (np.ndarray | None): precomputed length-p vector of eigenvalues of X'X
            est_ssq (bool): estimate prior effect size variances s^2 using MLE
            ssq (np.ndarray | None): length-L initialization s^2 for each effect
            ssq_range (tuple[float, float]): lower and upper bounds for each s^2, if estimated
            pi0 (np.ndarray | None): length-p vector of prior causal probability for each SNP; must sum to 1
            est_sigmasq (bool): estimate variance sigma^2
            est_tausq (bool): estimate both variances sigma^2 and tau^2
            sigmasq (float): initial value for sigma^2
            tausq (float): initial value for tau^2
            sigmasq_range (tuple[float, float] | None): lower and upper bounds for sigma^2, if estimated using MLE
            tausq_range (tuple[float, float] | None): lower and upper bounds for tau^2, if estimated using MLE
            PIP (np.ndarray | None): p x L initializations of PIPs
            mu (np.ndarray | None): p x L initializations of mu
            method (str): one of {'moments','MLE'}
            maxiter (int): maximum number of SuSiE iterations
            PIP_tol (float): convergence threshold for PIP difference between iterations

        Returns:
            dict[str, Any]: Dictionary with keys:
                PIP -- p x L matrix of PIPs, individually for each effect
                mu -- p x L matrix of posterior means conditional on causal
                omega -- p x L matrix of posterior precisions conditional on causal
                lbf_variable -- p x L matrix of log-Bayes-factors, for each effect
                ssq -- length-L array of final effect size variances s^2
                sigmasq -- final value of sigma^2
                tausq -- final value of tau^2
                alpha -- length-p array of posterior means of infinitesimal effects
                lbf -- length-p array of log-Bayes-factors for each CS

        Raises:
            RuntimeError: if missing LD or if unsupported variance estimation method
        """
        p = len(z)
        # Precompute V,D^2 in the SVD X=UDV', and V'X'y and y'y
        if (V is None or Dsq is None) and LD is None:
            raise RuntimeError("Missing LD")
        elif V is None or Dsq is None:
            eigvals, V = scipy.linalg.eigh(LD)
            Dsq = np.maximum(n * eigvals, 0)
        else:
            Dsq = np.maximum(Dsq, 0)
        Xty = np.sqrt(n) * z
        VtXty = V.T.dot(Xty)
        yty = n * meansq
        # Initialize diagonal variances, diag(X' Omega X), X' Omega y
        var = tausq * Dsq + sigmasq
        diagXtOmegaX = np.sum(V**2 * (Dsq / var), axis=1)
        XtOmegay = V.dot(VtXty / var)
        # Initialize s_l^2, PIP_j, mu_j, omega_j
        if ssq is None:
            ssq = np.ones(L) * 0.2
        if PIP is None:
            PIP = np.ones((p, L)) / p
        if mu is None:
            mu = np.zeros((p, L))
        lbf_variable = np.zeros((p, L))
        omega = diagXtOmegaX[:, np.newaxis] + 1 / ssq
        # Initialize prior causal probabilities
        if pi0 is None:
            logpi0 = np.ones(p) * np.log(1.0 / p)
        else:
            logpi0 = -np.ones(p) * np.inf
            inds = np.nonzero(pi0 > 0)[0]
            logpi0[inds] = np.log(pi0[inds])

        ####### Main SuSiE iteration loop ######
        def f(x: float) -> float:
            """Negative ELBO as function of x = sigma_e^2.

            Args:
                x (float): sigma_e^2

            Returns:
                float: negative ELBO as function of x = sigma_e^2
            """
            return -scipy.special.logsumexp(
                -0.5 * np.log(1 + x * diagXtOmegaX)
                + x * XtOmegar**2 / (2 * (1 + x * diagXtOmegaX))
                + logpi0
            )

        for it in range(maxiter):
            PIP_prev = PIP.copy()
            # Single effect regression for each effect l = 1,...,L
            for _l in range(L):
                # Compute X' Omega r_l for residual r_l
                b = np.sum(mu * PIP, axis=1) - mu[:, _l] * PIP[:, _l]
                XtOmegaXb = V.dot(V.T.dot(b) * Dsq / var)
                XtOmegar = XtOmegay - XtOmegaXb
                if est_ssq:
                    # Update prior variance ssq[l]
                    res = minimize_scalar(f, bounds=ssq_range, method="bounded")
                    if res.success:
                        ssq[_l] = res.x
                # Update omega, mu, and PIP
                omega[:, _l] = diagXtOmegaX + 1 / ssq[_l]
                mu[:, _l] = XtOmegar / omega[:, _l]
                lbf_variable[:, _l] = XtOmegar**2 / (2 * omega[:, _l]) - 0.5 * np.log(
                    omega[:, _l] * ssq[_l]
                )
                logPIP = lbf_variable[:, _l] + logpi0
                PIP[:, _l] = np.exp(logPIP - scipy.special.logsumexp(logPIP))
            # Update variance components
            if est_sigmasq or est_tausq:
                if method == "moments":
                    (sigmasq, tausq) = SUSIE_inf._MoM(
                        PIP,
                        mu,
                        omega,
                        sigmasq,
                        tausq,
                        n,
                        V,
                        Dsq,
                        VtXty,
                        Xty,
                        yty,
                        est_sigmasq,
                        est_tausq,
                    )
                elif method == "MLE":
                    (sigmasq, tausq) = SUSIE_inf._MLE(
                        PIP,
                        mu,
                        omega,
                        sigmasq,
                        tausq,
                        n,
                        V,
                        Dsq,
                        VtXty,
                        yty,
                        est_sigmasq,
                        est_tausq,
                        it,
                        sigmasq_range,
                        tausq_range,
                    )
                else:
                    raise RuntimeError("Unsupported variance estimation method")
                # Update X' Omega X, X' Omega y
                var = tausq * Dsq + sigmasq
                diagXtOmegaX = np.sum(V**2 * (Dsq / var), axis=1)
                XtOmegay = V.dot(VtXty / var)
            # Determine convergence from PIP differences
            PIP_diff = np.max(np.abs(PIP_prev - PIP))
            if PIP_diff < PIP_tol:
                break
        # Compute posterior means of b and alpha
        b = np.sum(mu * PIP, axis=1)
        XtOmegaXb = V.dot(V.T.dot(b) * Dsq / var)
        XtOmegar = XtOmegay - XtOmegaXb
        alpha = tausq * XtOmegar

        priors = np.log(np.repeat(1 / p, p))
        lbf_cs = np.apply_along_axis(
            lambda x: logsumexp(x + priors), axis=0, arr=lbf_variable
        )
        return {
            "PIP": PIP,
            "mu": mu,
            "omega": omega,
            "lbf_variable": lbf_variable,
            "ssq": ssq,
            "sigmasq": sigmasq,
            "tausq": tausq,
            "alpha": alpha,
            "lbf": lbf_cs,
        }

    @staticmethod
    def _MoM(
        PIP: np.ndarray,
        mu: np.ndarray,
        omega: np.ndarray,
        sigmasq: float,
        tausq: float,
        n: int,
        V: np.ndarray,
        Dsq: np.ndarray,
        VtXty: np.ndarray,
        Xty: np.ndarray,
        yty: float,
        est_sigmasq: bool,
        est_tausq: bool,
    ) -> tuple[float, float]:
        """Subroutine to estimate sigma^2, tau^2 using method-of-moments.

        Args:
            PIP (np.ndarray): p x L matrix of PIPs
            mu (np.ndarray): p x L matrix of posterior means conditional on causal
            omega (np.ndarray): p x L matrix of posterior precisions conditional on causal
            sigmasq (float): initial value for sigma^2
            tausq (float): initial value for tau^2
            n (int): sample size
            V (np.ndarray): precomputed p x p matrix of eigenvectors of X'X
            Dsq (np.ndarray): precomputed length-p vector of eigenvalues of X'X
            VtXty (np.ndarray): precomputed length-p vector V'X'y
            Xty (np.ndarray): precomputed length-p vector X'y
            yty (float): precomputed y'y
            est_sigmasq (bool): estimate variance sigma^2
            est_tausq (bool): estimate both variances sigma^2 and tau^2

        Returns:
            tuple[float, float]: (sigmasq,tausq) tuple of updated variances
        """
        (p, L) = mu.shape
        # Compute A
        A = np.array([[n, sum(Dsq)], [0, sum(Dsq**2)]])
        A[1, 0] = A[0, 1]
        # Compute diag(V'MV)
        b = np.sum(mu * PIP, axis=1)
        Vtb = V.T.dot(b)
        diagVtMV = Vtb**2
        tmpD = np.zeros(p)
        for _l in range(L):
            bl = mu[:, _l] * PIP[:, _l]
            Vtbl = V.T.dot(bl)
            diagVtMV -= Vtbl**2
            tmpD += PIP[:, _l] * (mu[:, _l] ** 2 + 1 / omega[:, _l])
        diagVtMV += np.sum((V.T) ** 2 * tmpD, axis=1)
        # Compute x
        x = np.zeros(2)
        x[0] = yty - 2 * sum(b * Xty) + sum(Dsq * diagVtMV)
        x[1] = sum(Xty**2) - 2 * sum(Vtb * VtXty * Dsq) + sum(Dsq**2 * diagVtMV)
        if est_tausq:
            sol = scipy.linalg.solve(A, x)
            if sol[0] > 0 and sol[1] > 0:
                (sigmasq, tausq) = sol
            else:
                (sigmasq, tausq) = (x[0] / n, 0)
        elif est_sigmasq:
            sigmasq = (x[0] - A[0, 1] * tausq) / n
        return sigmasq, tausq

    @staticmethod
    def _MLE(
        PIP: np.ndarray,
        mu: np.ndarray,
        omega: np.ndarray,
        sigmasq: float,
        tausq: float,
        n: int,
        V: np.ndarray,
        Dsq: np.ndarray,
        VtXty: np.ndarray,
        yty: float,
        est_sigmasq: bool,
        est_tausq: bool,
        it: int,
        sigmasq_range: tuple[float, float] | None = None,
        tausq_range: tuple[float, float] | None = None,
    ) -> tuple[float, float]:
        """Subroutine to estimate sigma^2, tau^2 using MLE.

        Args:
            PIP (np.ndarray): p x L matrix of PIPs
            mu (np.ndarray): p x L matrix of posterior means conditional on causal
            omega (np.ndarray): p x L matrix of posterior precisions conditional on causal
            sigmasq (float): initial value for sigma^2
            tausq (float): initial value for tau^2
            n (int): sample size
            V (np.ndarray): precomputed p x p matrix of eigenvectors of X'X
            Dsq (np.ndarray): precomputed length-p vector of eigenvalues of X'X
            VtXty (np.ndarray): precomputed length-p vector V'X'y
            yty (float): precomputed y'y
            est_sigmasq (bool): estimate variance sigma^2
            est_tausq (bool): estimate both variances sigma^2 and tau^2
            it (int): iteration number
            sigmasq_range (tuple[float, float] | None): lower and upper bounds for sigma^2, if estimated using MLE
            tausq_range (tuple[float, float] | None): lower and upper bounds for tau^2, if estimated using MLE

        Returns:
            tuple[float, float]: (sigmasq,tausq) tuple of updated variances
        """
        (p, L) = mu.shape
        if sigmasq_range is None:
            sigmasq_range = (0.2 * yty / n, 1.2 * yty / n)
        if tausq_range is None:
            tausq_range = (1e-12, 1.2 * yty / (n * p))
        # Compute diag(V'MV)
        b = np.sum(mu * PIP, axis=1)
        Vtb = V.T.dot(b)
        diagVtMV = Vtb**2
        tmpD = np.zeros(p)
        for _l in range(L):
            bl = mu[:, _l] * PIP[:, _l]
            Vtbl = V.T.dot(bl)
            diagVtMV -= Vtbl**2
            tmpD += PIP[:, _l] * (mu[:, _l] ** 2 + 1 / omega[:, _l])
        diagVtMV += np.sum((V.T) ** 2 * tmpD, axis=1)

        # negative ELBO as function of x = (sigma_e^2,sigma_g^2)
        def f(x: tuple[float, float]) -> float:
            """Negative ELBO as function of x = (sigma_e^2,sigma_g^2).

            Args:
                x (tuple[float, float]): (sigma_e^2,sigma_g^2)

            Returns:
                float: negative ELBO as function of x = (sigma_e^2,sigma_g^2)
            """
            return (
                0.5 * (n - p) * np.log(x[0])
                + 0.5 / x[0] * yty
                + np.sum(
                    0.5 * np.log(x[1] * Dsq + x[0])
                    - 0.5 * x[1] / x[0] * VtXty**2 / (x[1] * Dsq + x[0])
                    - Vtb * VtXty / (x[1] * Dsq + x[0])
                    + 0.5 * Dsq / (x[1] * Dsq + x[0]) * diagVtMV
                )
            )

        if est_tausq:
            res = minimize(
                f,
                (sigmasq, tausq),
                method="L-BFGS-B",
                bounds=(sigmasq_range, tausq_range),
            )
            if res.success:
                sigmasq, tausq = res.x
        elif est_sigmasq:

            def g(x: float) -> float:
                """Negative ELBO as function of x = sigma_e^2.

                Args:
                    x (float): sigma_e^2

                Returns:
                    float: negative ELBO as function of x = sigma_e^2
                """
                return f((x, tausq))

            res = minimize(g, sigmasq, method="L-BFGS-B", bounds=(sigmasq_range,))
            if res.success:
                sigmasq = res.x
        return sigmasq, tausq

    @staticmethod
    def cred_inf(
        PIP: np.ndarray,
        n: int = 100_000,
        coverage: float = 0.99,
        purity: float = 0.5,
        LD: np.ndarray | None = None,
        V: np.ndarray | None = None,
        Dsq: np.ndarray | None = None,
        dedup: bool = True,
    ) -> list[Any]:
        """Compute credible sets from single-effect PIPs.

        Args:
            PIP (np.ndarray): p x L matrix of PIPs
            n (int): sample size
            coverage (float): coverage of credible sets
            purity (float): purity of credible sets
            LD (np.ndarray | None): LD matrix (equal to X'X/n)
            V (np.ndarray | None): precomputed p x p matrix of eigenvectors of X'X
            Dsq (np.ndarray | None): precomputed length-p vector of eigenvalues of X'X
            dedup (bool): whether to deduplicate credible sets

        Returns:
            list[Any]: list of L lists of SNP indices in each credible set

        Raises:
            RuntimeError: if missing inputs for purity filtering
            ValueError: if either LD or V, Dsq are None
        """
        if (V is None or Dsq is None or n is None) and LD is None:
            raise RuntimeError("Missing inputs for purity filtering")
        # Compute credible sets
        cred = []
        for i in range(PIP.shape[1]):
            sortinds = np.argsort(PIP[:, i])[::-1]
            ind = min(np.nonzero(np.cumsum(PIP[sortinds, i]) >= coverage)[0])
            credset = sortinds[: (ind + 1)]
            # Filter by purity
            if len(credset) == 1:
                cred.append(list(credset))
                continue
            if len(credset) < 100:
                rows = credset
            else:
                np.random.seed(123)
                rows = np.random.choice(credset, size=100, replace=False)
            if LD is not None:
                LDloc = LD[np.ix_(rows, rows)]
            elif V is not None and Dsq is not None:
                LDloc = (V[rows, :] * Dsq).dot(V[rows, :].T) / n
            else:
                raise ValueError("Both LD and V, Dsq cannot be None")
            if np.min(np.abs(LDloc)) > purity:
                cred.append(sorted(credset))
        if dedup:
            cred = list(
                map(
                    list,
                    sorted(set(map(tuple, cred)), key=list(map(tuple, cred)).index),
                )
            )
        return cred

    @staticmethod
    def credible_set_qc(
        cred_sets: StudyLocus,
        p_value_threshold: float = 1e-5,
        purity_min_r2: float = 0.01,
        clump: bool = False,
        ld_index: LDIndex | None = None,
        study_index: StudyIndex | None = None,
        ld_min_r2: float | None = 0.8,
    ) -> StudyLocus:
        """Filter credible sets by lead P-value and min-R2 purity, and performs LD clumping.

        In case of duplicated loci, the filtering retains the loci wth the highest credibleSetlog10BF.


        Args:
            cred_sets (StudyLocus): StudyLocus object with credible sets to filter/clump
            p_value_threshold (float): p-value threshold for filtering credible sets, default is 1e-5
            purity_min_r2 (float): min-R2 purity threshold for filtering credible sets, default is 0.01
            clump (bool): Whether to clump the credible sets by LD, default is False
            ld_index (LDIndex | None): LDIndex object
            study_index (StudyIndex | None): StudyIndex object
            ld_min_r2 (float | None): LD R2 threshold for clumping, default is 0.8

        Returns:
            StudyLocus: Credible sets which pass filters and LD clumping.
        """
        cred_sets.df = (
            cred_sets.df.withColumn(
                "pValue", f.col("pValueMantissa") * f.pow(10, f.col("pValueExponent"))
            )
            .filter(f.col("pValue") <= p_value_threshold)
            .filter(f.col("purityMinR2") >= purity_min_r2)
            .drop("pValue")
            .withColumn(
                "rn",
                f.row_number().over(
                    Window.partitionBy("studyLocusId").orderBy(
                        f.desc("credibleSetLog10BF")
                    )
                ),
            )
            .filter(f.col("rn") == 1)
            .drop("rn")
        )
        if clump:
            assert study_index, "Running in clump mode, which requires study_index."
            assert ld_index, "Running in clump mode, which requires ld_index."
            assert ld_min_r2, "Running in clump mode, which requires ld_min_r2 value."
            cred_sets = (
                cred_sets.annotate_ld(study_index, ld_index, ld_min_r2)
                .clump()
                .filter(
                    ~f.array_contains(
                        f.col("qualityControls"),
                        StudyLocusQualityCheck.LD_CLUMPED.value,
                    )
                )
            )

        return cred_sets

cred_inf(PIP: np.ndarray, n: int = 100000, coverage: float = 0.99, purity: float = 0.5, LD: np.ndarray | None = None, V: np.ndarray | None = None, Dsq: np.ndarray | None = None, dedup: bool = True) -> list[Any] staticmethod

Compute credible sets from single-effect PIPs.

Parameters:

Name Type Description Default
PIP ndarray

p x L matrix of PIPs

required
n int

sample size

100000
coverage float

coverage of credible sets

0.99
purity float

purity of credible sets

0.5
LD ndarray | None

LD matrix (equal to X'X/n)

None
V ndarray | None

precomputed p x p matrix of eigenvectors of X'X

None
Dsq ndarray | None

precomputed length-p vector of eigenvalues of X'X

None
dedup bool

whether to deduplicate credible sets

True

Returns:

Type Description
list[Any]

list[Any]: list of L lists of SNP indices in each credible set

Raises:

Type Description
RuntimeError

if missing inputs for purity filtering

ValueError

if either LD or V, Dsq are None

Source code in src/gentropy/method/susie_inf.py
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
@staticmethod
def cred_inf(
    PIP: np.ndarray,
    n: int = 100_000,
    coverage: float = 0.99,
    purity: float = 0.5,
    LD: np.ndarray | None = None,
    V: np.ndarray | None = None,
    Dsq: np.ndarray | None = None,
    dedup: bool = True,
) -> list[Any]:
    """Compute credible sets from single-effect PIPs.

    Args:
        PIP (np.ndarray): p x L matrix of PIPs
        n (int): sample size
        coverage (float): coverage of credible sets
        purity (float): purity of credible sets
        LD (np.ndarray | None): LD matrix (equal to X'X/n)
        V (np.ndarray | None): precomputed p x p matrix of eigenvectors of X'X
        Dsq (np.ndarray | None): precomputed length-p vector of eigenvalues of X'X
        dedup (bool): whether to deduplicate credible sets

    Returns:
        list[Any]: list of L lists of SNP indices in each credible set

    Raises:
        RuntimeError: if missing inputs for purity filtering
        ValueError: if either LD or V, Dsq are None
    """
    if (V is None or Dsq is None or n is None) and LD is None:
        raise RuntimeError("Missing inputs for purity filtering")
    # Compute credible sets
    cred = []
    for i in range(PIP.shape[1]):
        sortinds = np.argsort(PIP[:, i])[::-1]
        ind = min(np.nonzero(np.cumsum(PIP[sortinds, i]) >= coverage)[0])
        credset = sortinds[: (ind + 1)]
        # Filter by purity
        if len(credset) == 1:
            cred.append(list(credset))
            continue
        if len(credset) < 100:
            rows = credset
        else:
            np.random.seed(123)
            rows = np.random.choice(credset, size=100, replace=False)
        if LD is not None:
            LDloc = LD[np.ix_(rows, rows)]
        elif V is not None and Dsq is not None:
            LDloc = (V[rows, :] * Dsq).dot(V[rows, :].T) / n
        else:
            raise ValueError("Both LD and V, Dsq cannot be None")
        if np.min(np.abs(LDloc)) > purity:
            cred.append(sorted(credset))
    if dedup:
        cred = list(
            map(
                list,
                sorted(set(map(tuple, cred)), key=list(map(tuple, cred)).index),
            )
        )
    return cred

credible_set_qc(cred_sets: StudyLocus, p_value_threshold: float = 1e-05, purity_min_r2: float = 0.01, clump: bool = False, ld_index: LDIndex | None = None, study_index: StudyIndex | None = None, ld_min_r2: float | None = 0.8) -> StudyLocus staticmethod

Filter credible sets by lead P-value and min-R2 purity, and performs LD clumping.

In case of duplicated loci, the filtering retains the loci wth the highest credibleSetlog10BF.

Parameters:

Name Type Description Default
cred_sets StudyLocus

StudyLocus object with credible sets to filter/clump

required
p_value_threshold float

p-value threshold for filtering credible sets, default is 1e-5

1e-05
purity_min_r2 float

min-R2 purity threshold for filtering credible sets, default is 0.01

0.01
clump bool

Whether to clump the credible sets by LD, default is False

False
ld_index LDIndex | None

LDIndex object

None
study_index StudyIndex | None

StudyIndex object

None
ld_min_r2 float | None

LD R2 threshold for clumping, default is 0.8

0.8

Returns:

Name Type Description
StudyLocus StudyLocus

Credible sets which pass filters and LD clumping.

Source code in src/gentropy/method/susie_inf.py
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
@staticmethod
def credible_set_qc(
    cred_sets: StudyLocus,
    p_value_threshold: float = 1e-5,
    purity_min_r2: float = 0.01,
    clump: bool = False,
    ld_index: LDIndex | None = None,
    study_index: StudyIndex | None = None,
    ld_min_r2: float | None = 0.8,
) -> StudyLocus:
    """Filter credible sets by lead P-value and min-R2 purity, and performs LD clumping.

    In case of duplicated loci, the filtering retains the loci wth the highest credibleSetlog10BF.


    Args:
        cred_sets (StudyLocus): StudyLocus object with credible sets to filter/clump
        p_value_threshold (float): p-value threshold for filtering credible sets, default is 1e-5
        purity_min_r2 (float): min-R2 purity threshold for filtering credible sets, default is 0.01
        clump (bool): Whether to clump the credible sets by LD, default is False
        ld_index (LDIndex | None): LDIndex object
        study_index (StudyIndex | None): StudyIndex object
        ld_min_r2 (float | None): LD R2 threshold for clumping, default is 0.8

    Returns:
        StudyLocus: Credible sets which pass filters and LD clumping.
    """
    cred_sets.df = (
        cred_sets.df.withColumn(
            "pValue", f.col("pValueMantissa") * f.pow(10, f.col("pValueExponent"))
        )
        .filter(f.col("pValue") <= p_value_threshold)
        .filter(f.col("purityMinR2") >= purity_min_r2)
        .drop("pValue")
        .withColumn(
            "rn",
            f.row_number().over(
                Window.partitionBy("studyLocusId").orderBy(
                    f.desc("credibleSetLog10BF")
                )
            ),
        )
        .filter(f.col("rn") == 1)
        .drop("rn")
    )
    if clump:
        assert study_index, "Running in clump mode, which requires study_index."
        assert ld_index, "Running in clump mode, which requires ld_index."
        assert ld_min_r2, "Running in clump mode, which requires ld_min_r2 value."
        cred_sets = (
            cred_sets.annotate_ld(study_index, ld_index, ld_min_r2)
            .clump()
            .filter(
                ~f.array_contains(
                    f.col("qualityControls"),
                    StudyLocusQualityCheck.LD_CLUMPED.value,
                )
            )
        )

    return cred_sets

susie_inf(z: np.ndarray, meansq: float = 1, n: int = 100000, L: int = 10, LD: np.ndarray | None = None, V: np.ndarray | None = None, Dsq: np.ndarray | None = None, est_ssq: bool = True, ssq: np.ndarray | None = None, ssq_range: tuple[float, float] = (0, 1), pi0: np.ndarray | None = None, est_sigmasq: bool = True, est_tausq: bool = False, sigmasq: float = 1, tausq: float = 0, sigmasq_range: tuple[float, float] | None = None, tausq_range: tuple[float, float] | None = None, PIP: np.ndarray | None = None, mu: np.ndarray | None = None, method: str = 'moments', maxiter: int = 100, PIP_tol: float = 0.001) -> dict[str, Any] staticmethod

Susie with random effects.

Parameters:

Name Type Description Default
z ndarray

vector of z-scores (equal to X'y/sqrt(n))

required
meansq float

average squared magnitude of y (equal to ||y||^2/n)

1
n int

sample size

100000
L int

number of modeled causal effects

10
LD ndarray | None

LD matrix (equal to X'X/n)

None
V ndarray | None

precomputed p x p matrix of eigenvectors of X'X

None
Dsq ndarray | None

precomputed length-p vector of eigenvalues of X'X

None
est_ssq bool

estimate prior effect size variances s^2 using MLE

True
ssq ndarray | None

length-L initialization s^2 for each effect

None
ssq_range tuple[float, float]

lower and upper bounds for each s^2, if estimated

(0, 1)
pi0 ndarray | None

length-p vector of prior causal probability for each SNP; must sum to 1

None
est_sigmasq bool

estimate variance sigma^2

True
est_tausq bool

estimate both variances sigma^2 and tau^2

False
sigmasq float

initial value for sigma^2

1
tausq float

initial value for tau^2

0
sigmasq_range tuple[float, float] | None

lower and upper bounds for sigma^2, if estimated using MLE

None
tausq_range tuple[float, float] | None

lower and upper bounds for tau^2, if estimated using MLE

None
PIP ndarray | None

p x L initializations of PIPs

None
mu ndarray | None

p x L initializations of mu

None
method str

one of {'moments','MLE'}

'moments'
maxiter int

maximum number of SuSiE iterations

100
PIP_tol float

convergence threshold for PIP difference between iterations

0.001

Returns:

Type Description
dict[str, Any]

dict[str, Any]: Dictionary with keys: PIP -- p x L matrix of PIPs, individually for each effect mu -- p x L matrix of posterior means conditional on causal omega -- p x L matrix of posterior precisions conditional on causal lbf_variable -- p x L matrix of log-Bayes-factors, for each effect ssq -- length-L array of final effect size variances s^2 sigmasq -- final value of sigma^2 tausq -- final value of tau^2 alpha -- length-p array of posterior means of infinitesimal effects lbf -- length-p array of log-Bayes-factors for each CS

Raises:

Type Description
RuntimeError

if missing LD or if unsupported variance estimation method

Source code in src/gentropy/method/susie_inf.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
@staticmethod
def susie_inf(  # noqa: C901
    z: np.ndarray,
    meansq: float = 1,
    n: int = 100000,
    L: int = 10,
    LD: np.ndarray | None = None,
    V: np.ndarray | None = None,
    Dsq: np.ndarray | None = None,
    est_ssq: bool = True,
    ssq: np.ndarray | None = None,
    ssq_range: tuple[float, float] = (0, 1),
    pi0: np.ndarray | None = None,
    est_sigmasq: bool = True,
    est_tausq: bool = False,
    sigmasq: float = 1,
    tausq: float = 0,
    sigmasq_range: tuple[float, float] | None = None,
    tausq_range: tuple[float, float] | None = None,
    PIP: np.ndarray | None = None,
    mu: np.ndarray | None = None,
    method: str = "moments",
    maxiter: int = 100,
    PIP_tol: float = 0.001,
) -> dict[str, Any]:
    """Susie with random effects.

    Args:
        z (np.ndarray): vector of z-scores (equal to X'y/sqrt(n))
        meansq (float): average squared magnitude of y (equal to ||y||^2/n)
        n (int): sample size
        L (int): number of modeled causal effects
        LD (np.ndarray | None): LD matrix (equal to X'X/n)
        V (np.ndarray | None): precomputed p x p matrix of eigenvectors of X'X
        Dsq (np.ndarray | None): precomputed length-p vector of eigenvalues of X'X
        est_ssq (bool): estimate prior effect size variances s^2 using MLE
        ssq (np.ndarray | None): length-L initialization s^2 for each effect
        ssq_range (tuple[float, float]): lower and upper bounds for each s^2, if estimated
        pi0 (np.ndarray | None): length-p vector of prior causal probability for each SNP; must sum to 1
        est_sigmasq (bool): estimate variance sigma^2
        est_tausq (bool): estimate both variances sigma^2 and tau^2
        sigmasq (float): initial value for sigma^2
        tausq (float): initial value for tau^2
        sigmasq_range (tuple[float, float] | None): lower and upper bounds for sigma^2, if estimated using MLE
        tausq_range (tuple[float, float] | None): lower and upper bounds for tau^2, if estimated using MLE
        PIP (np.ndarray | None): p x L initializations of PIPs
        mu (np.ndarray | None): p x L initializations of mu
        method (str): one of {'moments','MLE'}
        maxiter (int): maximum number of SuSiE iterations
        PIP_tol (float): convergence threshold for PIP difference between iterations

    Returns:
        dict[str, Any]: Dictionary with keys:
            PIP -- p x L matrix of PIPs, individually for each effect
            mu -- p x L matrix of posterior means conditional on causal
            omega -- p x L matrix of posterior precisions conditional on causal
            lbf_variable -- p x L matrix of log-Bayes-factors, for each effect
            ssq -- length-L array of final effect size variances s^2
            sigmasq -- final value of sigma^2
            tausq -- final value of tau^2
            alpha -- length-p array of posterior means of infinitesimal effects
            lbf -- length-p array of log-Bayes-factors for each CS

    Raises:
        RuntimeError: if missing LD or if unsupported variance estimation method
    """
    p = len(z)
    # Precompute V,D^2 in the SVD X=UDV', and V'X'y and y'y
    if (V is None or Dsq is None) and LD is None:
        raise RuntimeError("Missing LD")
    elif V is None or Dsq is None:
        eigvals, V = scipy.linalg.eigh(LD)
        Dsq = np.maximum(n * eigvals, 0)
    else:
        Dsq = np.maximum(Dsq, 0)
    Xty = np.sqrt(n) * z
    VtXty = V.T.dot(Xty)
    yty = n * meansq
    # Initialize diagonal variances, diag(X' Omega X), X' Omega y
    var = tausq * Dsq + sigmasq
    diagXtOmegaX = np.sum(V**2 * (Dsq / var), axis=1)
    XtOmegay = V.dot(VtXty / var)
    # Initialize s_l^2, PIP_j, mu_j, omega_j
    if ssq is None:
        ssq = np.ones(L) * 0.2
    if PIP is None:
        PIP = np.ones((p, L)) / p
    if mu is None:
        mu = np.zeros((p, L))
    lbf_variable = np.zeros((p, L))
    omega = diagXtOmegaX[:, np.newaxis] + 1 / ssq
    # Initialize prior causal probabilities
    if pi0 is None:
        logpi0 = np.ones(p) * np.log(1.0 / p)
    else:
        logpi0 = -np.ones(p) * np.inf
        inds = np.nonzero(pi0 > 0)[0]
        logpi0[inds] = np.log(pi0[inds])

    ####### Main SuSiE iteration loop ######
    def f(x: float) -> float:
        """Negative ELBO as function of x = sigma_e^2.

        Args:
            x (float): sigma_e^2

        Returns:
            float: negative ELBO as function of x = sigma_e^2
        """
        return -scipy.special.logsumexp(
            -0.5 * np.log(1 + x * diagXtOmegaX)
            + x * XtOmegar**2 / (2 * (1 + x * diagXtOmegaX))
            + logpi0
        )

    for it in range(maxiter):
        PIP_prev = PIP.copy()
        # Single effect regression for each effect l = 1,...,L
        for _l in range(L):
            # Compute X' Omega r_l for residual r_l
            b = np.sum(mu * PIP, axis=1) - mu[:, _l] * PIP[:, _l]
            XtOmegaXb = V.dot(V.T.dot(b) * Dsq / var)
            XtOmegar = XtOmegay - XtOmegaXb
            if est_ssq:
                # Update prior variance ssq[l]
                res = minimize_scalar(f, bounds=ssq_range, method="bounded")
                if res.success:
                    ssq[_l] = res.x
            # Update omega, mu, and PIP
            omega[:, _l] = diagXtOmegaX + 1 / ssq[_l]
            mu[:, _l] = XtOmegar / omega[:, _l]
            lbf_variable[:, _l] = XtOmegar**2 / (2 * omega[:, _l]) - 0.5 * np.log(
                omega[:, _l] * ssq[_l]
            )
            logPIP = lbf_variable[:, _l] + logpi0
            PIP[:, _l] = np.exp(logPIP - scipy.special.logsumexp(logPIP))
        # Update variance components
        if est_sigmasq or est_tausq:
            if method == "moments":
                (sigmasq, tausq) = SUSIE_inf._MoM(
                    PIP,
                    mu,
                    omega,
                    sigmasq,
                    tausq,
                    n,
                    V,
                    Dsq,
                    VtXty,
                    Xty,
                    yty,
                    est_sigmasq,
                    est_tausq,
                )
            elif method == "MLE":
                (sigmasq, tausq) = SUSIE_inf._MLE(
                    PIP,
                    mu,
                    omega,
                    sigmasq,
                    tausq,
                    n,
                    V,
                    Dsq,
                    VtXty,
                    yty,
                    est_sigmasq,
                    est_tausq,
                    it,
                    sigmasq_range,
                    tausq_range,
                )
            else:
                raise RuntimeError("Unsupported variance estimation method")
            # Update X' Omega X, X' Omega y
            var = tausq * Dsq + sigmasq
            diagXtOmegaX = np.sum(V**2 * (Dsq / var), axis=1)
            XtOmegay = V.dot(VtXty / var)
        # Determine convergence from PIP differences
        PIP_diff = np.max(np.abs(PIP_prev - PIP))
        if PIP_diff < PIP_tol:
            break
    # Compute posterior means of b and alpha
    b = np.sum(mu * PIP, axis=1)
    XtOmegaXb = V.dot(V.T.dot(b) * Dsq / var)
    XtOmegar = XtOmegay - XtOmegaXb
    alpha = tausq * XtOmegar

    priors = np.log(np.repeat(1 / p, p))
    lbf_cs = np.apply_along_axis(
        lambda x: logsumexp(x + priors), axis=0, arr=lbf_variable
    )
    return {
        "PIP": PIP,
        "mu": mu,
        "omega": omega,
        "lbf_variable": lbf_variable,
        "ssq": ssq,
        "sigmasq": sigmasq,
        "tausq": tausq,
        "alpha": alpha,
        "lbf": lbf_cs,
    }